OPTIMIZATION OF MACHINE LEARNING MODEL ACCURACY FOR BRAIN TUMOR CLASSIFICATION WITH PRINCIPAL COMPONENT ANALYSIS

  • Indra Maulana Informatic Departement, Faculty Of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Amril Mutoi Siregar Informatic Departement, Faculty Of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Rahmat Informatic Departement, Faculty Of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Ahmad Fauzi Informatic Departement, Faculty Of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: Brain tumor classification, Component Analysis, KNN, Machine learning, Medical image, Naïve Bayes, Principal, Random Forest, SVM

Abstract

The main issue in brain tumor classification is the accuracy and speed of diagnosis through medical imaging. This study aims to improve the accuracy of machine learning models for brain tumor classification by using Principal Component Analysis (PCA) for dimensionality reduction. The research methods include image preprocessing, feature scaling, PCA application, and the implementation of machine learning algorithms such as Logistic Regression, Random Forest, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes. The dataset consists of 3,264 images divided into training and testing sets. The results show that the use of PCA has varying impacts on different algorithms. PCA increases the accuracy of the SVM algorithm from 81% to 83% and KNN from 68% to 71%, but decreases the accuracy of Logistic Regression from 77% to 69% and Naive Bayes from 49% to 42%. Evaluation is performed using the Confusion Matrix and AUC-ROC to measure model performance. In conclusion, selecting the appropriate algorithm and preprocessing method is crucial in medical image classification, and the use of PCA should be considered based on the characteristics of the data and the algorithms used. This study also encourages the exploration of alternative dimensionality reduction methods for medical image analysis.

Downloads

Download data is not yet available.

References

M. Gupta, S. K. Sharma, and G. C. Sampada, “Classification of Brain Tumor Images Using CNN,” Comput Intell Neurosci, vol. 2023, pp. 1–6, Oct. 2023, doi: 10.1155/2023/2002855.

American Brain Tumor Association, “Brain tumor Education ,” https://www.abta.org/.

American Society of Clinical Oncology (ASCO), “Brain Tumor: Statistics,” https://www.cancer.net/.

R. Andre, B. Wahyu, and R. Purbaningtyas, “KLASIFIKASI TUMOR OTAK MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK DENGAN ARSITEKTUR EFFICIENTNET-B3,” 2021. [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index

B. Panda and C. S. Panda, “A Review on Brain Tumor Classification Methodologies,” Int J Sci Res Sci Technol, pp. 346–359, Dec. 2019, doi: 10.32628/IJSRST20717.

Dr. P. and M. P. , R. and R. Ramamurthy, “Evaluation and Classification of the Brain Tumor MRI using Machine Learning Technique,” Control Engineering and Applied Informatics, vol. 21, pp. 12–21, Dec. 2019.

M. K. Islam, M. S. Ali, M. S. Miah, M. M. Rahman, M. S. Alam, and M. A. Hossain, “Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm,” Machine Learning with Applications, vol. 5, p. 100044, Sep. 2021, doi: 10.1016/j.mlwa.2021.100044.

G. Cinarer and B. G. Emiroglu, “Classificatin of Brain Tumors by Machine Learning Algorithms,” in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE, Oct. 2019, pp. 1–4. doi: 10.1109/ISMSIT.2019.8932878.

M. Pareek, C. K. Jha, and S. Mukherjee, “Brain Tumor Classification from MRI Images and Calculation of Tumor Area,” 2020, pp. 73–83. doi: 10.1007/978-981-15-0751-9_7.

D. M. Toufiq, A. M. Sagheer, and H. Veisi, “Brain tumor identification with a hybrid feature extraction method based on discrete wavelet transform and principle component analysis,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 5, pp. 2588–2597, Oct. 2021, doi: 10.11591/eei.v10i5.3013.

L. Hussain, S. Saeed, I. A. Awan, A. Idris, M. S. A. Nadeem, and Q.-A. Chaudhry, “Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies,” Current Medical Imaging Formerly Current Medical Imaging Reviews, vol. 15, no. 6, pp. 595–606, Jul. 2019, doi: 10.2174/1573405614666180718123533.

S. Mohsen, A. M. Ali, E.-S. M. El-Rabaie, A. ElKaseer, S. G. Scholz, and A. M. A. Hassan, “Brain Tumor Classification Using Hybrid Single Image Super-Resolution Technique With ResNext101_32× 8d and VGG19 Pre-Trained Models,” IEEE Access, vol. 11, pp. 55582–55595, 2023, doi: 10.1109/ACCESS.2023.3281529.

S. K. Panda and R. C. Barik, “MR Brain 2D image Tumor and Cyst Classification Approach: an Empirical Analogy,” in 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), IEEE, Feb. 2023, pp. 1–6. doi: 10.1109/SCEECS57921.2023.10063064.

F. S. Chowdhury, T. Noor, Md. S. Islam, and M. K. Alam, “Brain Tumor Classification Using Watershed Segmentation with ANN Classifier,” in 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, Feb. 2023, pp. 1–5. doi: 10.1109/ECCE57851.2023.10101528.

G. L. E. Maquen-Niño et al., “Brain Tumor Classification Deep Learning Model Using Neural Networks,” International Journal of Online and Biomedical Engineering (iJOE), vol. 19, no. 09, pp. 81–92, Jul. 2023, doi: 10.3991/ijoe.v19i09.38819.

K. V. Kumar, M. Baid, and K. Menon, “Brain Tumor Classification using Transfer Learning on Augmented Data and Visual Explanation using Grad-CAM,” in 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, May 2023, pp. 965–971. doi: 10.1109/ICICCS56967.2023.10142464.

Sartaj Bhuvaji, Ankita Kadam, Prajakta Bhumkar, Sameer Dedge, and Swati Kanchan, “Brain Tumor Classification (MRI),” https://www.kaggle.com/dsv/1183165.

N. Basuni and Amril Mutoi Siregar, “Comparison of the Accuracy of Drug User Classification Models Using Machine Learning Methods,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1348–1353, Dec. 2023, doi: 10.29207/resti.v7i6.5401.

A. R. Alexey Spizhevoy, OpenCV 3 Computer Vision with Python Cookbook: Leverage the power of OpenCV 3 and Python to build computer vision applications, 1st ed. Birmingham : Packt Publishing, 2019.

S. A. B. R. Kalakuntla, “Detection of Brain Tumor in Magnetic Resonance Imaging (MRI) Images using Fuzzy C-Means and Thresholding,” SUNY Polytechnic Institute, Aug. 2020.

Krishnendu Kar, Mastering Computer Vision with TensorFlow 2.x : Build advanced computer vision applications using machine learning and deep learning techniques., 1st ed. Birmingham-Mumbai : Packt Publishing, 20AD. Accessed: May 26, 2024. [Online]. Available: https://www.oreilly.com/library/view/mastering-computer-vision/9781838827069/

Abid Ali Awan, “Recurrent Neural Network Tutorial (RNN),” https://www.datacamp.com/. Accessed: May 27, 2024. [Online]. Available: https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network

Jason Brownlee, “Train-Test Split for Evaluating Machine Learning Algorithms,” https://machinelearningmastery.com/. Accessed: May 27, 2024. [Online]. Available: https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/

Geeks for Geeks Team, “How To Do Train Test Split Using Sklearn In Python,” https://www.geeksforgeeks.org/. Accessed: May 27, 2024. [Online]. Available: https://www.geeksforgeeks.org/how-to-do-train-test-split-using-sklearn-in-python/

Ryan Wells, “Handwriting Image Classification with Python Sklearn,” https://wellsr.com/. Accessed: May 27, 2024. [Online]. Available: https://wellsr.com/python/image-classification-with-python-sklearn-handwriting/

A. Ambarwari, Q. Jafar Adrian, and Y. Herdiyeni, “Analysis of the Effect of Data Scaling on the Performance of the Machine Learning Algorithm for Plant Identification,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, pp. 117–122, Feb. 2020, doi: 10.29207/resti.v4i1.1517.

D. U. Ozsahin, M. Taiwo Mustapha, A. S. Mubarak, Z. Said Ameen, and B. Uzun, “Impact of feature scaling on machine learning models for the diagnosis of diabetes,” in 2022 International Conference on Artificial Intelligence in Everything (AIE), IEEE, Aug. 2022, pp. 87–94. doi: 10.1109/AIE57029.2022.00024.

J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis,” Nat Methods, vol. 14, no. 7, pp. 641–642, Jul. 2019, doi: 10.1038/nmeth.4346.

R. D. Cook, “Principal Components, Sufficient Dimension Reduction, and Envelopes,” Annu Rev Stat Appl, vol. 5, no. 1, pp. 533–559, Mar. 2019, doi: 10.1146/annurev-statistics-031017-100257.

K. J. Galinsky et al., “Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia,” The American Journal of Human Genetics, vol. 98, no. 3, pp. 456–472, Mar. 2018, doi: 10.1016/j.ajhg.2015.12.022.

C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee, “Second-generation PLINK: rising to the challenge of larger and richer datasets,” Gigascience, vol. 4, no. 1, p. 7, Dec. 2018, doi: 10.1186/s13742-015-0047-8.

I. Mathieson et al., “The genomic history of southeastern Europe,” Nature, vol. 555, no. 7695, pp. 197–203, Mar. 2019, doi: 10.1038/nature25778.

A. I. Khuri, “Introduction to Linear Regression Analysis, Fifth Edition by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining,” International Statistical Review, vol. 81, no. 2, pp. 318–319, Aug. 2013, doi: 10.1111/insr.12020_10.

M. Mia, A. F. N. Masruriyah, and A. R. Pratama, “The Utilization of Decision Tree Algorithm In Order to Predict Heart Disease,” JURNAL SISFOTEK GLOBAL, vol. 12, no. 2, p. 138, Sep. 2022, doi: 10.38101/sisfotek.v12i2.551.

S. Deepak and P. M. Ameer, “Automated Categorization of Brain Tumor from MRI Using CNN features and SVM,” J Ambient Intell Humaniz Comput, vol. 12, no. 8, pp. 8357–8369, Aug. 2021, doi: 10.1007/s12652-020-02568-w.

A. M. S. S. F. Koirunnisa Koirunnisa, “Optimized Machine Learning Performance with Feature Selection for Breast Cancer Disease Classification,” JITEKI, vol. 9, pp. 1131–1143, Nov. 2023.

R. H. Ramdlon, E. Martiana Kusumaningtyas, and T. Karlita, “Brain Tumor Classification Using MRI Images with K-Nearest Neighbor Method,” in 2019 International Electronics Symposium (IES), IEEE, Sep. 2019, pp. 660–667. doi: 10.1109/ELECSYM.2019.8901560.

L. Setiyani, H. H. Handayani, and W. A. Geraldine, “Comparison of the Performance of the SQL Injection Detection Model Using CNN, Logistic Regression, Random Forest, Naive Bayes, and Decision Tree,” in 2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC), IEEE, Oct. 2023, pp. 109–113. doi: 10.1109/ICONNIC59854.2023.10467843.

H. Yun, “Prediction model of algal blooms using logistic regression and confusion matrix,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, p. 2407, Jun. 2021, doi: 10.11591/ijece.v11i3.pp2407-2413.

H. Sholikhin, D. Wahiddin, and K. A. Baihaqi, “PENERAPAN ALGORITMA BACKWARD CHAINING UNTUK MENDIAGNOSA PENYAKIT DAN HAMA TANAMAN PADI,” vol. III, no. 1, p. 22, 2022.

Ralph Stern, “Interpretation of the Area Under the ROC Curve for Risk Prediction Models,” Cornel University, Feb. 2021.

ع. ركاب, “الصوت الروائي النسائي الجزائري وهندسة الأمكنة: قراءة في نماذج,” مجلة آفاق للعلوم, p. 213, 2019, doi: 10.37167/1677-000-012-020.

M. Dalili Shoaei and M. Dastani, “The Role of Social Media During the COVID-19 Crisis: A Narrative Review,” Health Technology Assessment in Action, Mar. 2021, doi: 10.18502/htaa.v4i1.5865.

Published
2024-06-11
How to Cite
[1]
I. Maulana, A. M. Siregar, R. Rahmat, and A. Fauzi, “OPTIMIZATION OF MACHINE LEARNING MODEL ACCURACY FOR BRAIN TUMOR CLASSIFICATION WITH PRINCIPAL COMPONENT ANALYSIS ”, J. Tek. Inform. (JUTIF), vol. 5, no. 3, pp. 903-915, Jun. 2024.