IMPLEMENTATION OF THE YOLOV8 METHOD TO DETECT WORK SAFETY HELMETS
Abstract
Work safety helmets are an important tool in OHS (Occupational Health and Safety) that must be used by workers. Workers who work with heavy equipment must wear work safety helmets as an obligation. Unfortunately, there are still many workers who do not comply with this rule. They will only wear helmets if there is supervision from a supervisor. However, if the supervisor is not on site, many workers will remove their helmets. The need for supervision of workers is important in reducing work accidents. From these problems, a work safety helmet detection model was created using the YOLOv8 method. This implementation aims to increase the accuracy values obtained and can reduce workload and increase efficiency in checking violations of the use of work safety helmets among workers. The method used consists of several stages, namely image acquisition of 670 images, image labeling, preprocessing, augmentation in roboflow, YOLOv8x model training with 100 epochs, image testing with a distance of 1, 3, 5 meters between the object and the camera, evaluation of test results. Based on the results of training with 467 images, the mAP50 reached 99.5%. Meanwhile, the test results with 100 images showed an accuracy of 99%.
Downloads
References
S. J. I. Pangkey, V. P. K. Lengkong, and R. T. Saerang, “Analisis Implementasi Kesehatan Dan Keselamatan Kerja (K3) Sebagai Upaya Terhadap Pencegahan Kecelakaan Kerja Di PT. PLN (Persero) UP3 Manado,” Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, vol. 11, no. 4, pp. 200–211, Oct. 2023, doi: https://doi.org/10.35794/emba.v11i4.
Y. Primasanti and E. Indriastiningsih, “Analisis Keselamatan Dan Kesehatan Kerja (K3) Pada Departemen Weaving PT Panca Bintang Tunggal Sejahtera,” JURNAL ILMU KEPERAWATAN INDONESIA, vol. 12, no. 1, pp. 55–77, Jul. 2019.
S. Bakti, “Pengaruh Keselamatan Kerja (K3) Dan Disiplin Kerja Terhadap Kinerja Karyawan Pada PT. Sinar Perdana Caraka Kecamatan Bagan Sinembah Kabupaten Rokan Hilir,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM, PekanBaru, 2019.
B. Widodo, H. Armanto, and E. Setyati, “Deteksi Pemakaian Helm Proyek Dengan Metode Convolutional Neural Network,” pp. 23–29, 2021.
M. A. Maulidin, “Kepala Pekerja Luka Akibat Tidak Pakai Helm Saat Tertimpa Alat Berat,” isafetymagazine.com.
F. Sulistya Pratiwi, “RI Alami 265.334 Kasus Kecelakaan Kerja hingga November 2022,” dataindonesia.id.
M. Alfin Taufiqurrochman and H. Februariyanti, “Rancang Bangun Aplikasi Deteksi Alat Pelindung Diri (APD) untuk Pekerja Proyek dengan Menggunakan Algoritma Yolov5,” Jurnal Teknologi Informasi dan Komunikasi, vol. 8, no. 2, pp. 472–480, Mar. 2024, doi: 10.35870/jti.
F. Moniaga and V. Syela Rompis, “Analisa Sistem Manajemen Kesehatan Dan Keselamatan Kerja (SMK3) Proyek Konstruksi Menggunakan Metode Hazard Identification And Risk Assessment,” Jurnal Realtech, vol. 15, no. 2, pp. 65–73, Oct. 2019, doi: https://doi.org/10.52159/realtech.v15i2.43.
I. Sulistyowati and T. Sukwika, “Investigasi Kecelakaan Kerja Akibat Alat Pelindung Diri Menggunakan Metode SCAT Dan Smart-PSL,” Jurnal Ilmu Kesehatan Bhakti Husada, vol. 13, no. 01, pp. 27–45, Jun. 2022, doi: 10.34305/jikbh.v13i1.367.
K. A. Baihaqi and Y. Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3,” SYSTEMATICS, vol. 3, no. 2, pp. 272–280, Aug. 2021.
S. Susanti, S. Aulia, and I. Dyah Irawati, “Deteksi Helm Otomatis Untuk Keselamatan Kerja di Tempat Proyek Berbasis Yolo,” pp. 28–32, 2023.
M. Hatami, T. Tukino, F. Nurapriani, W. Widiyawati, and W. Andriani, “Deteksi Helmet Dan Vest Keselamatan Secara Realtime Menggunakan Metode Yolo Berbasis Web Flask,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 10, no. 1, pp. 221–233, Jan. 2023, doi: 10.47668/edusaintek.v10i1.651.
M. A. Saputra, “Sistem Pemeriksaan Kelengkapan Keselamatan Dan Kesehatan Kerja (K3) Untuk Area Kerja Terbatas,” UNIVERSITAS SANGGA BUANA YPKP BANDUNG, Bandung, 2024.
A. Kusuma Wijaya and S. Devella, “Pengenalan Penggunaan Helm Proyek Berstandar Pada Citra Foto Berdasarkan SIFT Dengan SVM,” 2022.
A. Nurfirmansyah and R. Dijaya, “Deteksi Kelalaian Alat Pelindung Diri (APD) Pada Pekerja Kontruksi Bangunan,” Seminar Nasional Inovasi Teknologi, vol. 6, no. 1, pp. 58–63, Jul. 2022, doi: https://doi.org/10.29407/inotek.v6i1.2452.
A. Sadri Agung, A. S. Farid Dirgantara, M. Syachrul Hersyam, A. Baso Kaswar, and D. Darma Andayani, “Classification Of Tomato Quality Based On Color Features And Skin Characteristics Using Image Processing Based Artificial Neural Network,” Jurnal Teknik Informatika (JUTIF), vol. 4, no. 5, pp. 1021–1032, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.780.
A. Maulana and E. Andika, “Implementasi Face Recognition pada Absensi Siswa Menggunakan YOLOv5,” SEMINAR NASIONAL TEKNOLOGI DAN RISET TERAPAN, vol. 5, pp. 441–445, Oct. 2023.
S. F. Prisunia, “Pemanfaatan Jetson Nano Nvidia Untuk Mendeteksi Penggunaan Masker Secara Real-Time Menggunakan Opencv Python,” Semarang, Jul. 2023.
N. J. Hayati, D. Singasatia, and M. Muttaqin, “Object Tracking Menggunakan Algoritma You Only Look Once (Yolo)V8 Untuk Menghitung Kendaraan,” Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, pp. 91–99, Oct. 2023, doi: https://doi.org/10.34010/komputa.v12i2.10654.
M. I. Siami and M. Hamid, “Penerapan Deteksi Penggunaan Masker pada Sistem Absensi Karyawan menggunakan Metode Deep Learning,” Jurnal Ahli Muda Indonesia, vol. 3, no. 2, pp. 21–27, Dec. 2022, doi: 10.46510/jami.v3i2.118.
Copyright (c) 2024 Azhar Ferbista Direja, Yana Cahyana, Rahmat Rahmat, Kiki Ahmad Baihaqi
This work is licensed under a Creative Commons Attribution 4.0 International License.