CLASSIFICATION OF RICE PLANTS AFFECTED BY RATS USING THE SUPPORT VECTOR MACHINE (SVM) ALGORITHM

  • Nofie Prasetiyo Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Kiki Ahmad Baihaqi Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Santi Arum Puspita Lestari Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Yana Cahyana Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: Drone, Machine Learning, Paddy, SVM

Abstract

In the era of Indonesia's agrarian economy which is supported by the agricultural sector, rice plants play an important role in meeting food needs. However, pest attacks, especially field mice, can cause significant losses in rice production. To overcome this, this research proposes the use of the Support Vector Machine (SVM) algorithm with the Particle Swarm Optimization method in predicting rat pest attacks on rice plants. This research involves the process of collecting data from drone photos to identify affected agricultural land. The preprocessing stage involves changing colors from RGB to GRAY and zoom augmentation. Feature extraction is carried out using Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP). Testing was carried out involving the SVM/SVC model and performance evaluation was carried out using accuracy, precision and recall metrics. The preprocessing test results showed an increase in performance with training accuracy of 68.33%. However, the actual prediction on the original image results in a low accuracy of around 25%. However, image testing after involving the entire process, including preprocessing and model prediction, shows a higher level of accuracy, reaching around 90%.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, Statistik Indonesia 2019. 2019.

K. S. Putri and T. Anugrahini, “Strategi Bertahan Hidup Petani Padi Sawah Tadah hujan pada Musim Kemarau di Desa Cilebak,” 2023.

T. Wahyudie, Pengelolaan Komoditas Hortikultura Unggulan Berbasis Lingkungan. Lombok Tengah Nusa Tenggara Barat: Forum Pemuda Aswaja,2021.

R. Jusrianti, Analisis Kesesuaian Penggunaan lahan Berdasarkan Kelas Kempuan Lahan di Sub Daerah Aliran Sungai (DAS) Jenelata. Makasar: Universitas Hasanuddin Makasar, 2021.

S. Rusdiana and A. Maesya, “Pertumbuhkan Ekonomi dan kebutuhan Pangan di Indonesia,” Agriekonomika, vol. 6, no. 1, Apr. 2019, doi: 10.21107/agriekonomika.v6i1.1795.

K. A. Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” 2022.

R. Juniansyah Arifandi, M. Junus, M. Kusumawardani, P. Studi Jaringan Telekomunikasi Digital, J. Teknik Elektro, and P. Negeri Malang, “Sistem Pengusir Hama Burung dan Hama Tikus Pada Tanaman Padi Berbasis Raspberry pi”,2021.

A. Gazali and Ilhamiyah, Hama Penting Tanaman Utama dan Taktik Pengendaliannya. Banjarmasin: Universitas Islam Kalimantan Muhammad Arsyad Al-Banjary Banjarmasin, 2022.

P. Widodo, I. M. A. S. Wijaya, and I. P. G. Budisanjaya, “Hubungan Antara Persentase Serangan Hama Tikus dengan Produktivitas Lahan Melalui Pendekatan Foto Udara,” Jurnal Beta (BIOSISTEM DAN TEKNIK PERTANIAN), vol. 6, pp. 1–8, Sep. 2019, [Online]. Available: http://ojs.unud.ac.id/index.php/beta

C. Bagus, P. Putra, R. Cahya Wihandika, and S. Adinugroho, “Prediksi Luas Serangan Hama pada Tanaman Padi Menggunakan Metode Extreme Learning Machine (ELM) dan Particle Swarm Optimization (PSO),” 2020. [Online]. Available: http://j-ptiik.ub.ac.id

S. Hartati and Gadjah Mada University Press, Kecerdasan buatan berbasis pengetahuan.

H. Hikmayanti Handayani, S. Madenda, E. Prasetyo Wibowo, T. Maulana Kusuma, S. Widiyanto, and A. Fitri Nur Masruriyah, “The best classification algorithm for identification beef quality based on marbling,” in 2020 5th International Conference on Informatics and Computing, ICIC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICIC50835.2020.9288624.

“Pemanfaatan Model Neural Network dalam Generasi Baru Pertanian Presisi di Perkebukan Kelapa Sawit.”

R. K. Dinata and N. Hasdyna, Machine Learning. Sulawesi: Universitas Malikussaleh, 2020.

M. Alfin Jimly Asshiddiqie, B. Rahmat, and F. Tri Anggraeny, “Menggunakan Metode Convolutional Neural Network,” 2020.

B. Id et al., “Analisis Semiotika Foto Cerita Rupa Masyarakat.”

S. Fitri and N. Nurjanah, “Penerapan Support Vector Machine untuk Mendapatkan Sebaran lahan Sawah pada Citra Landsat 8,” INFOTECH Journal, vol. 4, pp. 1–5, 2019.

E. Puerwandono and I. Maulana, “Penerapan Algoritma Svm Untuk Klasifikasi Citra Daun Sirih,” Journal of Information Technology and Computer Science (INTECOMS), vol. 6, no. 2, pp. 1–7, 2023.

Meiriyama, S. Devella, and S. M. Adelfi, “Klasifikasi Daun Herbal Berdasarkan Fitur Bentuk Dan Tekstur Menggunakan KNN,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, pp. 1–12, 2022.

Published
2024-04-27
How to Cite
[1]
Nofie Prasetiyo, K. A. Baihaqi, S. A. P. Lestari, and Y. Cahyana, “CLASSIFICATION OF RICE PLANTS AFFECTED BY RATS USING THE SUPPORT VECTOR MACHINE (SVM) ALGORITHM”, J. Tek. Inform. (JUTIF), vol. 5, no. 2, pp. 637-643, Apr. 2024.