INTRODUCTION NATIONAL IDENTIFICATION NUMBER AND NAME ON ID CARD USING OCR (OPTICAL CHARACTER RECOGNITION) METHOD

  • Holila Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Adi Rizky Pratama Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Santi Arum Puspita Lestari Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Jamaludin Indra Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: Identity Card, National Identification Number, Optical Character Recognition

Abstract

This study examines the use of Optical Character Recognition (OCR) methods for the automatic recognition and extraction of text from images of Identity Cards (KTP). The aim is to provide an effective solution to the problems of document forgery and duplication, particularly in the use of KTP as an identity verification tool. Utilizing the Tesseract library, this research involves preprocessing steps such as conversion to grayscale, perspective transformation, and noise reduction to enhance OCR accuracy. Testing was conducted with 50 different KTP images using Python programming, achieving an Optical Character Recognition accuracy rate of 91%. Additionally, tests conducted with a dataset of 50 KTP images containing NIK and name variables showed that all images were successfully detected with an accuracy rate of 90%. This study confirms that the OCR method is effective in reading text from KTP images in real-time, thus it can be implemented for automatic identity verification.

Downloads

Download data is not yet available.

References

F. A. Setyawan, A. R. Hanif, and E. Nasrullah, “Deteksi Karakter Plat Nomor Kendaraan dengan Menggunakan Metode Optical Character Recognition (OCR),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 1, pp. 1–17, Jan. 2023.

S. Nanda, “Kedudukan Akta Notaris Dalam Hal Terjadinya Penyalahgunaan KTP-el Oleh Penghadap,” JURNAL NOTARIUS , vol. 1, no. 2, pp. 1–11, Jul. 2022.

F. C. Hayatina, S. H. Wijaya, M. Kusuma, and M. K. D. H. Hardhienata, “Pengelompokan Publikasi Ilmiah Berdasarkan Bidang Kepakaran Menggunakan Latent Dirichlet Allocation dan Normalized PSO-K-means Clustering of Scientific Publications Based on Field of Expertise Using Latent Dirichlet Allocation and Normalized PSO-K-means,” JURNAL ILMU KOMPUTER AGRI-INFORMATIKA, vol. 10, no. 2, pp. 1–12, 2019, [Online]. Available: http://journal.ipb.ac.id/index.php/jika

M. Rizal Toha and A. Triayudi, “Penerapan Membaca Tulisan di dalam Gambar Menggunakan Metode OCR Berbasis Website pada e-KTP,” Jurnal Sains dan Teknologi, vol. 11, pp. 175–183, 2022, doi: 10.23887/jst-undiksha.v11i1.

Supriadi, “Aplikasi Kalkulator Tulisan Tangan Sederhana Menggunakan Optical Character Recognition (OCR),” Applied Technology and Computing Science Journal, vol. 3, no. 2, pp. 1–14, Dec. 2020.

S. S. Abdullah and F. D. Muhammad, “Penggunaan e-KTP untuk Registrasi Otomatis Memanfaatkan Sistem OCR Dengan Metode Template Matching Correlation,” Media Jurnal Informatika, vol. 12, no. 2, p. 2020, doi: 10.35194/mji.v12i2.1224.g1147.

A. Mesakh, “Sistem Pengenalan Plat Nomor Kendaraan Menggunakan Mask RCNN dan CNN,” Jurnal Ilmu Komputer dan Sistem Informasi , pp. 1–3, 2021, doi: 10.1109/cvpr.2004.1315206.

N. H. Harani, P. Cahyo, and M. Hasanah, “Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python,” Jurnal Teknik Informatika, vol. 11, no. 3, pp. 1–7, 2019.

R. I. Indrakusuma, A. S. Ahmadiyah, and N. F. Ariyani, “Pengenalan dan Klasifikasi Tulisan Pada Nota Pembelian Material (Studi Kasus Proyek Konstruksi),” Jurnal Teknik ITS, vol. 10, pp. 1–6, 2021.

K. A. Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” Syntax: Jurnal Informatika, vol. 11, no. 02, 2022.

K. N. Susanto, K. Gunadi, and E. Setyati, “Pengenalan Karakter pada Plat Nomor Indonesia dengan Tilt Correction dan Metode Faster R-CNN,” Jurnal INFRA, vol. 7, no. 1, pp. 1–7, 2019.

A. R. Hanif, E. Nasrullah, and F. X. A. Setyawan, “Deteksi Karakter Plat Nomor Kendaraan Dengan Metode Optical Character Recognition(OCR),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 1, pp. 1–9, Jan. 2023, doi: 10.23960/jitet.v11i1.2897.

R. Rismanto, A. Prasetyo, and D. A. Irawati, “Optimalisasi Image Thresholding pada Optical Character Recognition Pada Sistem Digitalisasi dan Pencarian Dokumen,” PETIR, vol. 13, no. 1, pp. 1–11, Mar. 2020, doi: 10.33322/petir.v13i1.659.

H. D. Aprillian, H. Dwi Purnomo, and H. Purwanto, “Utilization of Optical Character Recognition Technology in Reading Identity Cards,” 2019. [Online]. Available: http://ejournal.uksw.edu/ijiteb

G. Septian, D. Wahiddin, H. Y. Novita, H. H. Handayani, A. R. Juwita, and A. F. N. Masruriyah, “The Implementation of Real-ESRGAN as An Anticipation to Reduce CER Value in Plate Number Extraction Results Employing EasyOCR,” IEEE, Jan. 2022, Accessed: Jun. 05, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10006900/authors#authors

I. Maulana, N. Khairunisa, and R. Mufidah, “Deteksi Bentuk Wajah Menggunakan Convolutional Neural Network (CNN),” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 6, pp. 1–8, Dec. 2023.

O. E. Karlina and D. Indarti, “Pengenalan Objek Makanan Cepat Saji Pada Video dan Realtime Webcam Menggunakan You Look Only Once((YOLO),” Jurnal Ilmiah Informatika Komputer, vol. 24, no. 3, pp. 199–208, 2019, doi: 10.35760/ik.2019.v24i3.2362.

M. A. Rizaldi and E. R. Kaburuan, “Jurnal Politeknik Caltex Riau Implementasi OCR dengan Metode Autoencoder untuk verifikasi data KTP,” 2022. [Online]. Available: https://jurnal.pcr.ac.id/index.php/jkt/.

Published
2024-07-29
How to Cite
[1]
H. Holila, A. R. Pratama, S. A. P. Lestari, and J. Indra, “INTRODUCTION NATIONAL IDENTIFICATION NUMBER AND NAME ON ID CARD USING OCR (OPTICAL CHARACTER RECOGNITION) METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1191-1196, Jul. 2024.