SENTIMENT ANALYSIS OF THE SAMBARA APPLICATION USING THE SUPPORT VECTOR MACHINE ALGORITHM

  • Thoriq Janati Firdaus Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Jamaludin Indra Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Santi Arum Puspita Lestari Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Hanny Hikmayanti Information Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: sambara, sentiment analysis, Support Vector Machine

Abstract

Rapid technological developments have opened up new opportunities for public services by utilizing digital application innovations. One example is the West Java Samsat Mobile (SAMBARA) designed by the West Java Provincial Revenue Agency (BAPENDA). The SAMBARA application is expected to accelerate annual vehicle tax payment obligations, but several reviews on the Playstore show user dissatisfaction with SAMBARA's performance. This study aims to conduct a sentiment analysis of SAMBARA application reviews using the Support Vector Machine algorithm. SAMBARA user review data on Google Playstore was collected using the python programming language google play scraper library on google colabolatory resulting in 1620 data on January 2, 2024. The data pre-processing stage involves various steps such as data cleaning, lowercase conversion, tokenization, stemming, stop words removal, normalization, and the use of the TF-IDF method. The data is then labeled positive and negative, positive for reviews with scores of 4 and 5 and negative labels for reviews with scores of 1 to 3. The Support Vector Machine (SVM) algorithm is used for classification, a well-known method for accurate classification. Model evaluation was conducted using a confusion matrix to calculate the precision, recall, and F1-Score values. The evaluation results provide an overview of the performance of the classification algorithm in grouping user reviews into positive and negative categories. The evaluation results show that the SVM algorithm provides quite good performance with an accuracy value of 88.75%, precision 87.51%, recall 81.25%, and F1-Score 83.71% which can be the basis for improving the quality of service of the SAMBARA application. Because the Sambara application has a negative sentiment of 73.4%, it can be concluded that it still gets a bad rating in terms of use.

Downloads

Download data is not yet available.

References

T. A. U. Azmi, L. Hakim, D. C. R. Novitasari, and W. D. U. D. Utami, “Application Random Forest Method for Sentiment Analysis in Jamsostek Mobile Review,” Telematika, vol. 20, no. 1, p. 117, 2023, doi: 10.31315/telematika.v20i1.8868.

M. F. D. Samudera and V. I. Pertiwi, “Inovasi Pelayanan Publik Melalui Jamsostek Mobile (JMO) (Studi Kasus di BPJS Ketenagakerjaan Cabang Rungkut Kota Surabaya),” JPAP J. Penelit. Adm. Publik, vol. 8, no. 1, pp. 152–172, 2022, doi: 10.30996/jpap.v8i1.6617.

A. Ramdani, “Analisis Deskriptif Terhadap Inovasi Layanan Aplikasi SAMBARA (Samsat Mobile Jawa Barat),” J. Acad. Praja, vol. 3, no. 01, pp. 37–43, 2020, doi: 10.36859/jap.v3i01.141.

M. F. Mulyaddin, M. R. Mahendra, and M. Dewi, “Analisis Sentimen Komentar Pengguna Aplikasi SAMBARA di Google Playstore,” vol. 39, pp. 85–91, 2024.

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 303–312, 2024.

Y. Khoiruddin, A. Fauzi, and A. M. Siregar, “Analisis Sentimen Gojek Indonesia Pada Twitter Menggunakan Algoritme Naïve Bayes Dan Support Vector Machine,” J. Ilm. Komput., vol. 19, pp. 391–400, 2023.

I. Zulfahmi, J. Williem Iskandar, P. V Medan, S. Tuan, and D. Serdang, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” J. Penelit. Rumpun Ilmu Tek., vol. 3, no. 1, pp. 11–21, 2024, [Online]. Available: https://doi.org/10.55606/juprit.v3i1.3096

Y. Romadhoni and K. F. H. Holle, “Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM,” J. Inform. J. Pengemb. IT, vol. 7, no. 2, pp. 118–124, 2022, doi: 10.30591/jpit.v7i2.3191.

V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, and Ahmad Hanif Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” J. Buana Inform., vol. 14, no. 01, pp. 40–49, 2023, doi: 10.24002/jbi.v14i01.6909.

I. M. Juniandika, I. Bagus, and M. Mahendra, “Analisis Sentimen Aplikasi Zenius Menggunakan Metode Logistic Regression,” vol. 1, pp. 1171–1178, 2023.

M. Riski, M. Fikry, and Yusra, “Klasifikasi Sentimen Ulasan Aplikasi WhatsApp di Play Store Menggunakan Metode K-Nearest Neighbor,” Media Online), vol. 4, no. 1, pp. 438–444, 2023, doi: 10.30865/klik.v4i1.1050.

F. A. Larasati, D. E. Ratnawati, and B. T. Hanggara, “Analisis Sentimen Ulasan Aplikasi Dana dengan Metode Random Forest,” … Teknol. Inf. dan …, vol. 6, no. 9, pp. 4305–4313, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

A. Purnamawati, M. N. Winarto, and M. Mailasari, “Analisis Sentimen Aplikasi TikTok menggunakan Metode BM25 dan Improved K-NN Fitur Chi-Square,” J. Komtika (Komputasi dan Inform., vol. 7, no. 1, pp. 97–105, 2023, doi: 10.31603/komtika.v7i1.8938.

M. Irfan, D. Widiyanto, and J. Jayanta, “Analisis Sentimen Pada Ulasan Aplikasi Samsat Mobile Jawa Barat (Sambara) Menggunakan algoritma Naive bayes Classifier dengan seleksi fitur Chi Square,” … Mhs. Bid. Ilmu …, pp. 337–346, 2022, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2179%0Ahttps://conference.upnvj.ac.id/index.php/senamika/article/download/2179/1748

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.

S. Shevira, I. Made, A. D. Suarjaya, and P. Wira Buana, “Pengaruh Kombinasi dan Urutan Pre-Processing pada Tweets Bahasa Indonesia,” JITTER-Jurnal Ilm. Teknol. dan Komput., vol. 3, no. 2, 2022.

T. D. Ramadhan, D. Wahiddin, and E. E. Awal, “Klasifikasi Sentimen Terhadap Pinjaman Online (Pinjol) Menggunakan Algoritma Naive Bayes,” Sci. Student J. Information, Technol. Sci., vol. IV, no. 1, pp. 82–87, 2023, [Online]. Available: www.tripadvisor.com

M. Wijaya, “Penerapan Algoritma Naïve Bayes Dan KNN Dalam Menganalisis Sentimen Aplikasi Tiktok Shop Seller Center Berdasarkan Review Google Playstore,” vol. V, pp. 115–122, 2024.

E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter,” vol. 17, no. 1, pp. 25–38, 2022.

Y. Alfiansah, A. Siregar, and ..., “Penerapan Algoritma K-Nearest Neighbors untuk Analisis Sentimen pada Buletin APTIKOM,” … Student J. …, vol. III, pp. 125–132, 2022, [Online]. Available: https://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/view/431%0Ahttps://journal.ubpkarawang.ac.id/mahasiswa/index.php/ssj/article/download/431/345

J. A. Pangetsu, Y. Cahyana, and H. Y. Novita, “Penerapan Algoritma Support Vector Machine Untuk,” Sci. Student J. Information, Technol. Sci. , vol. 1, no. 1, p. 40, 2024, [Online]. Available: https://t.co/dKngKqLqXI

A. Syihabudin, A. Ratna Juwita, and A. Rizki Pratama, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Terhadap Produk Motor Matic Honda Beat dan Scoopy,” Sci. Student J. Information, Technol. Sci., vol. IV, no. 1, pp. 95–101, 2023.

M. H. Mahendra, D. T. Murdiansyah, and K. M. Lhaksmana, “Analisis Sentimen Tweet COVID-19 Menggunakan Metode K-Nearest Neighbors dengan Ekstraksi Fitur TF-IDF dan CountVectorizer Dike : Jurnal Ilmu Multidisiplin,” vol. 1, pp. 37–43, 2023.

T. N. Wijaya, R. Indriati, and M. N. Muzaki, “Analisis Sentimen Opini Publik Tentang Undang-Undang Cipta Kerja Pada Twitter,” Jambura J. Electr. Electron. Eng., vol. 3, no. 2, pp. 78–83, 2021, doi: 10.37905/jjeee.v3i2.10885.

Published
2024-09-03
How to Cite
[1]
T. J. Firdaus, J. Indra, S. A. P. Lestari, and H. Hikmayanti, “SENTIMENT ANALYSIS OF THE SAMBARA APPLICATION USING THE SUPPORT VECTOR MACHINE ALGORITHM”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1183-1192, Sep. 2024.