OBJECT DETECTION OF INDONESIAN SIGN LANGUAGE SYSTEM USING YOLOV7 METHOD

  • Genta Kusuma Atmaja Informatics Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Hanny Hikmayanti Informatics Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Rahmat Informatics Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
  • Sutan Faisal Informatics Engineering, Faculty of Computer Science, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: Detection object, SIBI, YOLOv7

Abstract

SIBI or Indonesian Sign Language System, a communication language for the deaf community in Indonesia. SIBI has the advantage of conveying information between individuals. SIBI integrates various hand signals to replace words in Indonesian, enabling effective and inclusive communication. SIBI still lacks educational programs in the community and identifying SIBI has become a major problem in facilitating communication for normal people with hearing impairments. The proposed solution in the development of SIBI detection is to utilize artificial intelligence (AI) technology and digital image processing. This program focuses on understanding the typical hand movements used in SIBI. So a program was created to detect hand language using the YOLOv7 architecture. This study aims to educate those who are not yet familiar with the SIBI hand object that will be detected., especially in the context of sign language recognition for singular pronouns. The research method used is data acquisition by collecting a dataset of 320 images, data annotation by labeling objects on the hand, image pre-processing with augmentation, resizing, and cropping, model training with 100 epochs on both pre-trained models (yolov7 and yolov7-x), and testing is done by detecting 20 images from each class category totaling 5. The dataset used for training 300 images and validation 20 images. The results of the yolov7 model accuracy value are mAP @ .5 of 99.5% and mAP @ .5: .95: of 90.5%. The accuracy of the yolov7-x model is mAP @ .5 99.6% and mAP @ .5: .95: of 75.8%. And the results of the test carried out with 20 images, out of 20 correct images only 18 and the accuracy value obtained is 90%.

Downloads

Download data is not yet available.

References

T. Bintoro, “Sistem Isyarat Bahasa Indonesia.” Accessed: Dec. 21, 2023. [Online]. Available: https://pmpk.kemdikbud.go.id/sibi/

R. A. Ramadani, I. Ketut, G. Darma Putra, I. Ayu, and D. Giriantari, “S Stemming Algorithm for Indonesian Signaling Systems (SIBI),” International Journal of Engineering and Emerging Technology, vol. 5, no. 1, pp. 57–60, 2020.

M. Farid Naufal, S. Ferdiana Kusuma, and P. Korespondensi, “ANALISIS PERBANDINGAN ALGORITMA MACHINE LEARNING DAN DEEP LEARNING UNTUK KLASIFIKASI CITRA SISTEM ISYARAT BAHASA INDONESIA (SIBI),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) , vol. 11, no. 4, pp. 873–882, 2023, doi: 10.25126/jtiik.2023106828.

M. Bhavadharshini, J. Josephine Racheal, M. Kamali, S. Sankar, and M. Bhavadharshini, “Sign language translator using YOLO algorithm,” Advances in Parallel Computing, vol. 39, pp. 159–166, 2021, doi: 10.3233/APC210136.

M. Abdurrahman Hakim, T. Rohana, D. Sulistya Kusumaningrum, and P. Karawang, “Seminar Nasional Hasil Riset Prefix-RTR PEREKAMAN OTOMATIS BERDASARKAN DETEKSI OBJEK MANUSIA PADA CCTV MENGGUNAKAN METODE YOU ONLY LOOK ONCE V3 (YOLOV3),” 2020.

S. C. Mesbahi, M. A. Mahraz, J. Riffi, and H. Tairi, “Hand Gesture Recognition Based on Various Deep Learning YOLO Models.” [Online]. Available: www.ijacsa.thesai.org

S. Daniels, N. Suciati, and C. Fathichah, “Indonesian Sign Language Recognition using YOLO Method,” IOP Conf Ser Mater Sci Eng, vol. 1077, no. 1, p. 012029, Feb. 2021, doi: 10.1088/1757-899x/1077/1/012029.

A. Fauzi et al., “Development of Health Mask Identification Using YOLOv5 Architecture,” International Journal Of Artificial Intelegence Research, vol. 6, no. 1, p. 2022, 2023, doi: 10.29099/ijair.v6i1.1.573.

S. Muhammed Ali, “Comparative Analysis of YOLOv3, YOLOv4 and YOLOv5 for Sign Language Detection.” [Online]. Available: www.ijariie.com2393

A. Maulana, M. Suherman, A. F. N. Masruriyah, and H. Y. Novita, “PENERAPAN ALGORITMA CNN MENGGUNAKAN FRAMEWORK YOLO UNTUK DETEKSI OBJEK PRODUK DI PERUSAHAAN MANUFAKTUR,” INTI Nusa Mandiri, vol. 18, no. 2, pp. 107–114, Feb. 2024, doi: 10.33480/inti.v18i2.5028.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” 2022.

Sudaryanto and W. Sahayu, “KAMUS BESAR BAHASA INDONESIA EDISI KELIMA DALAM PEMBELAJARAN BAHASA INDONESIA (PERSPEKTIF FILSAFAT PENDIDIKAN BAHASA),” Dec. 2020.

A. Setiyadi, E. Utami, and D. Ariatmanto, “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur,” 2023.

A. Leandro, C. Carneiro, D. Henrique, P. Salvadeo, and L. De Brito Silva, Large-scale dataset and benchmarking for hand and face detection focused on sign language. 2023. [Online]. Available: https://github.com/AlvaroCavalcante/hand-face-detector

N. Begum et al., “Borno-Net: A Real-Time Bengali Sign-Character Detection and Sentence Generation System Using Quantized Yolov4-Tiny and LSTMs,” Applied Sciences (Switzerland), vol. 13, no. 9, May 2023, doi: 10.3390/app13095219.

S. Bankar, T. Kadam, V. Korhale, and M. A. A. Kulkarni, “Real Time Sign Language Recognition Using Deep Learning,” International Research Journal of Engineering and Technology, 2022, [Online]. Available: www.irjet.net

C. Dewi, A. P. S. Chen, and H. J. Christanto, “Deep Learning for Highly Accurate Hand Recognition Based on Yolov7 Model,” Big Data and Cognitive Computing, vol. 7, no. 1, Mar. 2023, doi: 10.3390/bdcc7010053.

A. Ma’ruf and M. Hardjianto, “3 rd Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) 30 Agustus 2023-Jakarta,” 2023.

D. Permana and J. Sutopo, “APLIKASI PENGENALAN ABJAD SISTEM ISYARAT BAHASA INDONESIA (SIBI) DENGAN ALGORITMA YOLOv5 MOBILE APPLICATION ALPHABET RECOGNITION OF INDONESIAN LANGUAGE SIGN SYSTEM (SIBI) USING YOLOv5 ALGORITHM,” vol. 11, no. 2, 2023.

K. A. Baihaqi and Y. Cahyana, “Application of Convolution Neural Network Algorithm for Rice Type Detection Using Yolo v3,” 2021.

A. Ferbista Direja, Y. Cahyana, and K. A. Baihaqi, “IMPLEMENTATION OF THE YOLOV8 METHOD TO DETECT WORK SAFETY HELMETS,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 3, pp. 865–871, 2024, doi: 10.52436/1.jutif.2024.5.3.2005.

Published
2024-08-07
How to Cite
[1]
Genta Kusuma Atmaja, H. Hikmayanti, R. Rahmat, and Sutan Faisal, “OBJECT DETECTION OF INDONESIAN SIGN LANGUAGE SYSTEM USING YOLOV7 METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1197-1203, Aug. 2024.

Most read articles by the same author(s)