IMPLEMENTATION OF PARTICLE SWARM OPTIMIZATION IN K-NEAREST NEIGHBOR ALGORITHM AS OPTIMIZATION HEPATITIS C CLASSIFICATION
Abstract
Hepatitis has become a public health problem that is generally caused by infection with the hepatitis virus. One type of hepatitis caused by a virus is Hepatitis C. This disease can cause patients to experience inflammation of the liver. In the worst conditions, it can even lead to death. Initial predictions need to be made to increase the awareness of each individual against the threat of Hepatitis C by using the K-Nearest Neighbor method. K-Nearest Neighbor is a classification method that can give a pretty good percentage result in classifying, especially when using large training data. However, K-Nearest Neighbor still has a weakness, namely the determination of the value of K that is less precise so that it can reduce classification performance. To overcome these shortcomings, the researchers used the implementation of Particle Swarm Optimization on K-Nearest Neighbor to find the optimal K value. The existence of this implementation is expected to be able to increase the value of accuracy in classification and overcome solutions to weaknesses in the K-Nearest Neighbor algorithm. From the results of the K-Nearest Neighbor test, the accuracy value is 97.24% at K=5 and K=3. As for the results of testing the implementation of Particle Swarm Optimization on the K-Nearest Neighbor, there was an increase in the accuracy value of 2.07% to 99.31%. This test shows that the implementation of PSO can overcome the shortcomings of KNN and this model can be used as the best solution to determine the classification of Hepatitis C disease.
Downloads
References
W. H. Organization, “Acute, severe hepatitis of unknown origin in children,” 2022.
K. Wiliam Mahardika, Y. A. Sari, and A. Arwan, “Optimasi K-Nearest Neighbour Menggunakan Particle Swarm Optimization pada Sistem Pakar untuk Monitoring Pengendalian Hama pada Tanaman Jeruk,” J. Pengemb. Teknol. Informassi dan Ilmu Komput., vol. 2, no. 9, pp. 3333–3344, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
Siswanto, Epidemiologi Penyakit Hepatitis. Mulawarman University Press, 2020.
Alhawaris, “Hepatitis C: Epidemiologi, Etiologi, dan Patogenitas,” J. Sains dan Kesehat., vol. 2, no. 2, pp. 139–150, Dec. 2019, doi: 10.25026/jsk.v2i2.132.
S. Jonathan, W. Jack, and W. Suzanne, “Situation Analysis of Viral Hepatitis in Indonesia : A Policy Report,” 2018. [Online]. Available: http://www.healthpolicypartnership.com/wp-content/uploads/hepatitis/Situation_analysis_of_viral_hepatitis_in_Indonesia.pdf
S. Sulastri, K. Hadiono, and M. T. Anwar, “Analisis Perbandingan Klasifikasi Prediksi Penyakit Hepatitis Dengan Menggunakan Algoritma K-Nearest Neighbor, Naïve Bayes Dan Neural Network,” J. Din., vol. 24, no. 2, pp. 82–91, 2020, doi: 10.35315/dinamik.v24i2.7867.
P. Putra, A. M. H Pardede, and S. Syahputra, “ANALISIS METODE K-NEAREST NEIGHBOUR (KNN) DALAM KLASIFIKASI DATA IRIS BUNGA,” J. Tek. Inform. Kaputama, vol. 6, no. 1, 2022.
M. Kumari and S. Soni, “A Review of classification in Web Usage Mining using K-Nearest Neighbour,” 2017. [Online]. Available: http://www.ripublication.com
W. Nugroho, “Optimasi Metode K-Nearest Neighbours dengan Backward Elimination Menggunakan Dataset Software Effort Estimation Bianglala Informatika,” Bianglala Inform., vol. 8, no. 2, pp. 129–133, 2020.
A. Bode, “K-Nearest Neighbor Dengan Feature Selection Menggunakan Backward Elimination Untuk Prediksi Harga Komoditi Kopi Arabika,” Ilk. J. Ilm., vol. 9, no. 2, pp. 188–195, 2017, doi: 10.33096/ilkom.v9i2.139.188-195.
D. Untuk, M. Skripsi, T. Zadlyka, and J. Teknik Informatika, “Optimasi Metode K-Nearest Neighbor (KNN) Menggunakan Particle Swarm Optimization (PSO) untuk Diagnosis Penyakit Hati. Oleh,” 2021.
H. Febriyanto, “PENERAPAN ALGORITMA PARTICLES SWARM OPTIMIZATION DALAM PENYELESAIAN GATE ASSIGNMENT PROBLEM (STUDI KASUS : BANDARA SOEKARNO-HATTA),” Institut Teknologi Sepuluh Nopember, 2018.
K. Sasirekha and K. Thangavel, “Optimization of K-nearest neighbor using particle swarm optimization for face recognition,” Neural Comput. Appl., vol. 31, no. 11, pp. 7935–7944, 2019, doi: 10.1007/s00521-018-3624-9.
I. Assayyis, I. Cholissodin, and Tibyani, “Optimasi Travelling Salesman Problem Pada Angkutan Sekolah Menggunakan Algoritme Genetika ( Studi Kasus : Sekolah MI Salafiyah Kasim Blitar ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 3, no. 1, pp. 454–461, 2020.
W. Yunus, “Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Ginjal Kronik,” J. Tek. Elektro CosPhi, vol. 2, no. 2, pp. 51–55, 2018.
R. Lichtinghagen, F. Klawonn, and G. Hoffmann, Hepatitis C Prediction Dataset Laboratory values of blood donors and Hepatitis C patients. 2020. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/HCV+data
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
T. Hidayat, A. F. Habibi, and U. L. Yuhana, “Software Defect Prediction Menggunakan Algoritma K-Nn Yang Dioptimasi Dengan Pso,” SCAN - J. Teknol. Inf. dan Komun., vol. 15, no. 1, pp. 16–21, 2020, doi: 10.33005/scan.v15i1.1848.
D. Pajri, Y. Umaidah, and T. N. Padilah, “K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 242–253, 2020, doi: 10.28932/jutisi.v6i2.2658.
R. D. Liklikwatil, E. Noersasongko, C. Supriyanto, S. Dipanegara, and U. D. Nuswantoro, “Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Memprediksi Harga Komoditi Karet,” 2018.
T. A. Yoga and Prihandoko, “Penerapan Optimasi Berbasis Particle Swarm Optimization (Pso) Algoritma Naïve Bayes Dan K-Nearest Neighbor Sebagai Perbandingan Untuk Mencari Kinerja Terbaik Dalam Mendeteksi Kanker Payudara,” J. Bangkit Indones., vol. 7, no. 2, p. 1, 2018, [Online]. Available: http://journal.universitasmulia.ac.id/index.php/metik/article/view/62
V. Cherian and M. S. Bindu, “Heart Disease Prediction Using Naïve Bayes Algorithm and Laplace Smoothing Technique,” Int. J. Comput. Sci. Trends Technol., vol. 5, no. 2, pp. 68–73, 2017.
S. Yahdin et al., “COMBINATION OF KNN AND PARTICLE SWARM OPTIMIZATION ( PSO ) ON AIR QUALITY PREDICTION,” J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 7–14, 2022.
Copyright (c) 2023 Susi Setianingsih, Maria Ulfa Chasanah, Yogiek Indra Kurniawan, Lasmedi Afuan
This work is licensed under a Creative Commons Attribution 4.0 International License.