CLASSIFICATION OF TOMATO QUALITY BASED ON COLOR FEATURES AND SKIN CHARACTERISTICS USING IMAGE PROCESSING BASED ARTIFICIAL NEURAL NETWORK

  • Andi Sadri Agung Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Amin Farid Dirgantara SR Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Muh Syachrul Hersyam Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Andi Baso Kaswar Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Dyah Darma Andayani Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
Keywords: Artificial Neural Networks, Classification, Image Processing, Quality, Tomatoes

Abstract

Tomato (Solanum Lycopersicum) is a plantation commodity in Indonesia with a production rate that tends to increase every year. With a high economic value, maintenance is important so that the quality is getting better. The problems that arise at this time are related to the determination of the quality of tomatoes which is still done manually and depends on humans so classification using technology is considered important to be developed. Previously there has been researching related to the classification of tomatoes. However, accuracy and computation time still need to be improved. Therefore, in this research, a method of classification of tomatoes was carried out using Artificial Neural Network (ANN) Backpropagation algorithm by utilizing color features and skin characteristics based on image processing. This research followed several stages, from acquiring 300 tomato images with 3 class levels to the classification process using ANN Backpropagation. Several training scenarios and tests were conducted to select the feature combined with the highest accuracy and fastest computation time. The combination of 3 best features used is RGB color feature with shape and texture features as skin characteristic parameters. Based on training results with 210 training images, an accuracy of 100% was obtained with a computation time of 2.58 seconds per image. While test results with 90 test images, accuracy reaches 95.5% with a computing time of 1.39 seconds per image. So it can be concluded that the method used has gone well in classifying tomato image quality based on color features and skin characteristics.

Downloads

Download data is not yet available.

References

E. S. Dewi, “Isolasi Likopen Dari Buah Tomat (Lycopersicum Esculentum) Dengan Pelarut Heksana,” Jurnal Agrotek UMMat, vol. 5, no. 2, pp. 123–125, Aug. 2018, doi: 10.31764/agrotek.v5i2.707.

Ishak, I. Amal, M. Muhammad, and A. Baso Kaswar, “Sistem Pendeteksi Kematangan Buah Tomat Berbasis Pengolahan Citra Digital Menggunakan Metode Jaringan Syaraf Tiruan,” Jurnal MediaTIK : Jurnal Media Pendidikan Teknik Informatika dan Komputer, vol. 5, no. 1, pp. 65–69, Jan. 2022, doi: 10.26858/jmtik.v5i1.33214.

S. Kusumaningtyas and R. A. Asmara, “Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Jaringan Syaraf Tiruan(JST),” Jurnal Informatika Polinema, vol. 2, no. 2, pp. 72–75, Feb. 2016, doi: 10.33795/jip.v2i2.59.

N. I. Humaira B, M. Herman, N. Nurhikma, and A. B. Kaswar, “Klasifikasi Tingkat Kualitas dan Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Jaringan Syaraf Tiruan,” Journal of Embedded Systems, Security and Intelligent Systems, vol. 2, no. 1, pp. 20–26, May 2021, doi: 10.26858/jessi.v2i1.20329.

Mukhlis, I. S. Harahap, and W. R. Hutasuhut, “Pengaruh Pelilinan dan Suhu Penyimpanan terhadap Sifat Fisik-Kimia Tomat (Lycopersicum esculentum mill),” Jurnal Agrohita, vol. 2, no. 1, pp. 6–14, 2018, doi: 10.31604/jap.v2i1.496.

“Badan Pusat Statistik.” https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.html (accessed Nov. 02, 2022).

C. Wasonowati, “Peningkatan Produksi dan Kualitas Tomat (Lycopersicon esculentum) dengan Sistem Budi daya Hidroponik,” Rekayasa, vol. 3, no. 2, pp. 83–89, Oct. 2010, doi: 10.21107/rekayasa.v3i2.2293.

J. A. Abbott, Quality measurement of fruits and vegetables, vol. 15. 1999.

R. Pratama, A. F. Assagaf, and F. Tempola, “Deteksi Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna HIS,” JIKO (Jurnal Informatika dan Komputer), vol. 2, no. 2, pp. 81–86, Oct. 2019, doi: 10.33387/jiko.

Z. E. Fitri, R. Rizkiyah, A. Madjid, and A. M. N. Imron, “Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat,” Jurnal Rekayasa Elektrika, vol. 16, no. 1, pp. 44–49, Apr. 2020, doi: 10.17529/jre.v16i1.15535.

U. Murdika, M. Alif, and Y. Mulyani, “Identifikasi Kualitas Buah Tomat dengan Metode PCA (Principal Component Analysis) dan Backpropagation,” ELECTRICIAN –Jurnal Rekayasa dan Teknologi Elektro, vol. 15, no. 3, pp. 175–180, Oct. 2021, doi: 10.23960/elc.v15n3.2240.

N. E. Paulina, Z. E. Fitri, Madjid Abdul, and A. M. N. Imron, “Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur Menggunakan K-Nearest Neighbor,” MIND (Multimedia Artificial Intelligent Networking Database) Journal, vol. 6, no. 2, pp. 144–154, Dec. 2021, doi: 10.26760/mindjournal.v6i2.144-154.

G. E. G., . R. Rumani M., and C. Setianingsih, “Perancangan dan Implementasi untuk Penyortiran Buah Tomat (Lycopersicum Esculentum) Dengan Metode Learning Vector Quantizationprototype,” e-Proceeding of Engineering, vol. 4, no. 3, pp. 4177–4185, Dec. 2017.

A. S. R. Sinaga, “Implementasi Teknik Threshoding Pada Segmentasi Citra Digital,” Jurnal Mantik Penusa, vol. 1, no. 2, pp. 48–51, Dec. 2017.

A. Zendhaf, R. Magdalena, and R. Y. N. Fu’adah, “Segmentasi Pembuluh Darah pada Fundus Retina Menggunakan Deteksi Tepi dan Operasi Morfologi,” e-Proceeding of Engineering, vol. 5, no. 3, pp. 5506–5512, Dec. 2018.

Nurhidayati and I. Marzuki, “Deteksi Otomatis Penyakit Daun Jagung Menggunakan Teknik Klasterisasi Data dan Operasi Morfologi,” Energy - Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 10, no. 1, May 2020, [Online]. Available: https://ejournal.upm.ac.id/index.php/energy/article/view/604

A. Sumarsono and Supatman, “Imagery Identification of Tomatoes Which Contain Pesticides Using Learning Vector Quantization,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 9–16, 2021, doi: 10.20884/1.jutif.2021.2.1.15.

C. Imam, E. W. Hidayat, and N. I. Kurniati, “Classification of Meat Imagery Using Artificial Neural Network Method and Texture Feature Extraction By Gray Level Co-Occurrence Matrix Method,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 1–8, 2021, doi: 10.20884/1.jutif.2021.2.1.37.

A. Irianti, P. H. Rantelinggi, A. Taufik, N. Zulkarnaim, and S. Cokrowibowo, “Implementation of Backpropagation Artificial Neural Network for Food Price Prediction in Majene Central Market,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, pp. 681–688, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.226

Published
2023-10-03
How to Cite
[1]
A. S. Agung, A. F. D. SR, M. S. Hersyam, A. B. Kaswar, and D. D. Andayani, “CLASSIFICATION OF TOMATO QUALITY BASED ON COLOR FEATURES AND SKIN CHARACTERISTICS USING IMAGE PROCESSING BASED ARTIFICIAL NEURAL NETWORK”, J. Tek. Inform. (JUTIF), vol. 4, no. 5, pp. 1021-1032, Oct. 2023.