• Andi Baso Kaswar Computer Engineering Department, Universitas Negeri Makassar, Indonesia
  • Ridwan Daud Mahande Informatics and Computer Engineering Education Department, Universitas Negeri Makassar, Indonesia
  • Jasruddin Daud Malago Department of Physics Science-Education, Universitas Negeri Makassar, Indonesia
Keywords: esp32, fuzzy logic, hydroponic, lettuce, nutrition


In the last few years, the terms Smart Agriculture, Smart Farming, Urban Farming, or Precision Farming have been increasingly recognized and growing rapidly. Hydroponics is one part that is currently a trend, both in industrial or household scale businesses and hobbies. One of the most important things to consider in maintaining the quality of hydroponic plant growth is the concentration of nutrients in the water. A series of studies have been conducted to improve the quality of hydroponic plants. However, the developments that have been carried out have not focused on optimal nutritional control. The previous hydroponic plant nutrition control system still used conventional methods, namely the use of a rule base with firm values ​​, and did not consider the quantity and quality of water. Therefore, this study proposes a new model for an adaptive control system for hydroponic lettuce nutrition based on the Fuzzy Logic Sugeno method using ESP32. The fuzzy logic Sugeno method is used to create a new model of the inference system for determining the amount of nutrient dosage based on supporting data obtained from sensors installed on hydroponic growing media. Compared with the conventional method, the resulting test results show that the proposed method can adapt the amount of added nutrients, provide optimal nutrient addition output, and prevent excess nutrient additions that can potentially accumulate toxic ions in water that degrade water quality.


Download data is not yet available.


P. Tomar and G. Kaur, Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture. United States of America: IGI Global, 2021.

FAO, “Global Agriculture Towards 2050,” 2019, doi: 10.5822/978-1-61091-885-5.

Rasna and S. Nur Alam, “Smart Farming Berbasis IOT Pada Tanaman Cabai Untuk Pengendalian dan Monitoring Kelembaban Tanah Dengan Metode Fuzzy,” J. Teknol. dan Sist. Tertanam, vol. 03, no. 01, pp. 25–35, 2022.

R. P. Astutik, “Aplikasi Telegram Untuk Sistem Monitoring pada Smart Farming,” J. Teknol. dan Terap. Bisnis, vol. 2, no. 1, pp. 1–6, 2019.

C. Bernstein, “Smart Farming,” Techtarget.com, 2019. .

T. Wada, “Theory and Technology to Control the Nutrient Solution of Hydroponics,” in Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation, Elsevier Inc., 2018, pp. 5–14.

R. Kusumastuti et al., “Akuntansi Proses Bisnis Sayuran Hydroponik Kelompok Warga di Kecamatan Jambi Luar Kota 1,2,3,4,” J. Innovasi, Teknol. dan Dharma Bagi Masy., vol. 3, no. 3, pp. 64–70, 2021, [Online]. Available: https://online-journal.unja.ac.id/JITDM/article/view/16377/12357.

M. D. Sardare and S. V Admane, “A Review on Plant Without Soil - Hydroponics,” Int. J. Res. Eng. Technol., vol. 02, no. 03, pp. 299–304, 2013, doi: 10.15623/ijret.2013.0203013.

M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using Deep Neural Networks,” Comput. Electron. Agric., vol. 155, no. October, pp. 473–486, 2018, doi: 10.1016/j.compag.2018.10.015.

C. H. Vanipriya, Maruyi, S. Malladi, and G. Gupta, “Artificial intelligence enabled plant emotion xpresser in the development hydroponics system,” Mater. Today Proc., vol. 45, pp. 5034–5040, 2021, doi: 10.1016/j.matpr.2021.01.512.

S. Zhang et al., “Investigation on environment monitoring system for a combination of hydroponics and aquaculture in greenhouse,” Inf. Process. Agric., no. xxxx, 2021, doi: 10.1016/j.inpa.2021.06.006.

M. I. Alipio, A. E. M. Dela Cruz, J. D. A. Doria, and R. M. S. Fruto, “On the design of Nutrient Film Technique hydroponics farm for smart agriculture,” Eng. Agric. Environ. Food, vol. 12, no. 3, pp. 315–324, 2019, doi: 10.1016/j.eaef.2019.02.008.

S. S. Hasanh, A. H. Miry, and T. M. Salman, “Air Pollution Monitoring based Fuzzy Controller with Embedded System,” in Journal of Physics: Conference Series, 2021, vol. 1879, no. 2, p. 22085.

F. Prasetyawan and L. Anifah, “Sistem Kontrol Suhu Ketel Elektrik Menggunakan Metode Logika Fuzzy Sugeno Berbasis ESP8266 dengan Komunikasi Internet Of Things (IoT),” J. Inf. Eng. Educ. Technol., vol. 5, no. 1, pp. 5–12, 2021, doi: 10.26740/jieet.v5n1.p5-12.

R. Santhosh and M. Mohanapriya, “Generalized fuzzy logic based performance prediction in data mining,” Mater. Today Proc., vol. 45, pp. 1770–1774, 2021.

M. Khairudin, S. Yatmono, A. C. Nugraha, M. Ikhsani, A. Shah, and M. L. Hakim, “Object Detection Robot Using Fuzzy Logic Controller Through Image Processing,” in Journal of Physics: Conference Series, 2021, vol. 1737, no. 1, p. 12045.

A. B. Kaswar, A. Z. Arifin, and A. Y. Wijaya, “Segmentasi Citra Ikan Tuna dengan Mahalanobis Histogram Thresholding dan Mahalanobis Fuzzy C-Means,” J. Buana Inform., vol. 7, no. 3, pp. 197–204, 2016.

V. Shepelev, A. Glushkov, T. Bedych, T. Gluchshenko, and Z. Almetova, “Predicting the traffic capacity of an intersection using fuzzy logic and computer vision,” Mathematics, vol. 9, no. 20, p. 2631, 2021.

F. Safitri, M. Amin, and I. Almeina Lubis, “Mosque Rug Sterilization Robot Using Ultraviolet C Light With Interface Hc-05 and Ultrasonic,” J. Tek. Inform., vol. 3, no. 3, pp. 649–655, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.256.

A. Kurniawan and H. A. Lestari, “SISTEM KONTROL NUTRISI FLOATING HYDROPONIC SYSTEM KANGKUNG (Ipomea reptans) MENGGUNAKAN INTERNET OF THINGS BERBASIS TELEGRAM,” J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 9, no. 4, p. 326, 2020, doi: 10.23960/jtep-l.v9i4.326-335.

A. Heryanto, J. Budiarto, and S. Hadi, “Sistem Nutrisi Tanaman Hidroponik Berbasis Internet Of Things Menggunakan NodeMCU ESP8266,” J. BITe, vol. 2, no. 1, pp. 31–39, 2020, doi: 10.30812/bite.v2i1.805.

S. I. Kuala, Y. H. Siregar, and N. D. Susanti, “Sistem Kendali Jumlah Zat Padat Terlarut (TDS) Pada Larutan Nutrisi Menggunakan Alat CCT53200E,” Ris. Teknol. Ind., vol. 13, no. 1, pp. 22–32, 2019.

How to Cite
A. B. Kaswar, R. D. Mahande, and J. D. Malago, “A NEW MODEL FOR HYDROPONIC LETTUCE NUTRITION ADAPTIVE CONTROL SYSTEM BASED ON FUZZY LOGIC SUGENO METHOD USING ESP32”, J. Tek. Inform. (JUTIF), vol. 4, no. 2, pp. 391-400, Mar. 2023.