PERSONAL PROTCTIVE EQUIPMENT DETECTION FOR OCCUPATIONAL SAFETY AND HEALTH USING YOLOV8 IN MANUFACTURING COMPANIES

DETEKSI ALAT PELINDUNG DIRI (APD) UNTUK KESELAMATAN DAN KESEHATAN KERJA MENGGUNAKAN YOLOV8

  • Abdul Gapur Informatics Departement, Faculty of Computer Sciences, Universitas Buana Perjuangan Karawang, Indonesia
  • Deden Wahiddin Informatics Departement, Faculty of Computer Sciences, Universitas Buana Perjuangan Karawang, Indonesia
  • Tohirin Al Mudzakir Informatics Departement, Faculty of Computer Sciences, Universitas Buana Perjuangan Karawang, Indonesia
  • Jamaludin Indra Informatics Departement, Faculty of Computer Sciences, Universitas Buana Perjuangan Karawang, Indonesia
Keywords: you only look oncel, Pelrsonal Protelctivel Elquipmelnt (PPEl), Occupational Helalth and Safelty (OHS)

Abstract

According to data from BPJS Keltelnagakelrjaan, 265,333 cases of work accidents were recorded in 2022. The use of personal protective equipment (PPE) is very important in reducing and preventing work accidents in the company. Although PPE cannot eliminate all risks, it is possible to minimise the number of work accidents in manufacturing companies. The aim of this research is to automatically select Personal Protective Equipment (PPE) in the form of hard hats and vests and to improve the accuracy results using the YOLOv8 model. With a dataset of 500 helmet and velst images for deltelksi which will be categorised into 4 classes namely hellelm, velst, no-hellelm, no-velst. The dataset used is 500 data, which is then divided into three datasets, namely: training data as much as 70%, validation data as much as 20%, and telst data as much as 10%, from the dataselt telrselbut the best results of testing data values from 50 dataselt the accuracy results obtained are 0.98. It is hoped that with the use of Meltode and accuracy results using Yolo v8, it can be used in companies by detecting Personal Protective Equipment (PPE) with fast and accurate results, so that it can be applied in monitoring the use of PPE in manufacturing companies to reduce the risk of work accidents in manufacturing companies

Downloads

Download data is not yet available.

References

M. Busyairi, L. Ode, and A. Safar, “PRODUKTIVITAS KERJA KARYAWAN,” no. 09, pp. 112–124, 2014.

Sulistya Febriana, “RI Alami 265.334 Kasus Kecelakaan Kerja hingga November 2022,” dataindonesia.id, 2023. https://dataindonesia.id/tenaga-kerja/detail/ri-alami-265334-kasus-kecelakaan-kerja-hingga-november-2022 (accessed Jan. 22, 2024).

I. Yuliani and R. Amalia, “ARTIKEL PENELITIAN Faktor-Faktor yang Berhubungan Dengan Perilaku Pekerja dalam Penggunaan Alat Pelindung Diri ( APD ),” vol. 08, no. 01, 2019.

D. Rahmat, T. Yang, and M. Esa, “Te nt a ng :,” no. 14, 1970.

T. Online, G. Qorik, O. Pratamasunu, F. Nur, and P. Kurnia, “Jurnal Politeknik Caltex Riau Deteksi Tangan Otomatis Pada Video Percakapan Bahasa Isyarat Indonesia Menggunakan Metode Deep Gated Recurrent Unit ( GRU ),” vol. 8, no. 1, pp. 186–193, 2022.

P. A. Nugroho, I. Fenriana, and R. Arijanto, “Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia,” Algor, vol. 2, no. 1, 2020.

M. Hatami, F. Nurapriani, W. Andriani, U. Buana, P. Karawang, and S. B. Saleh, “DETEKSI HELMET DAN VEST KESELAMATAN SECARA REALTIME MENGGUNAKAN METODE YOLO BERBASIS WEB FLASK,” vol. 10, no. 1, pp. 221–233, 2023.

“Disusun oleh:,” 2024.

A. Kahfi, “Overview of Waste Management,” Jurisprud. Dep. Law, Fac. Sharia Law, vol. 4, no. 1, p. 12, 2017.

U. Deteksi, O. Produk, and D. I. Perusahaan, “Inti nusa mandiri,” vol. 18, no. 2, pp. 107–114, 2024.

F. Aziz, U. Bina, S. Informatika, U. N. Mandiri, and M. Wajah, “YOLO-V8 PENINGKATAN ALGORITMA UNTUK DETEKSI,” vol. 7, no. 3, pp. 1437–1444, 2023.

J. Adiwibowo and K. Gunadi, “Deteksi Alat Pelindung Diri Menggunakan Metode YOLO dan Faster R-CNN”.

Å. Rinnan, L. Nørgaard, and F. Van Den Berg, “Data Pre-processing,” vol. 3, 2009.

R. Kurniawan, A. T. Martadinata, and S. D. Cahyo, “Klasifikasi Tingkat Kematangan Buah Sawit Berbasis Deep Learning dengan Menggunakan Arsitektur Yolov5,” vol. 5, no. 1, pp. 302–309, 2023, doi: 10.47065/josh.v5i1.4408.

A. Revan and E. Legya, “Klasifikasi Jenis Cacat pada Kulit Menggunakan Arsitektur GoogLeNet,” vol. 11, no. 1, 2024, doi: 10.33369/pseudocode.11.1.15-20.

N. Bi, J. Chen, and J. Tan, “Accepted manuscript to appear in IJPRAI Accepted Manuscript International Journal of Pattern Recognition and Artificial Intelli- gence,” 2019, doi: 10.1142/S0218001419400160.

X. Wang, H. Gao, Z. Jia, and Z. Li, “BL-YOLOv8 : An Improved Road Defect Detection Model Based on YOLOv8,” 2023.

A. Setiyadi, E. Utami, and D. Ariatmanto, “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur,” vol. 7, no. September, pp. 891–901, 2023.

Y. Li, Q. Fan, H. Huang, Z. Han, and Q. Gu, “A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition,” 2023.

Published
2024-08-30
How to Cite
[1]
A. Gapur, D. Wahiddin, T. A. Mudzakir, and J. Indra, “PERSONAL PROTCTIVE EQUIPMENT DETECTION FOR OCCUPATIONAL SAFETY AND HEALTH USING YOLOV8 IN MANUFACTURING COMPANIES: DETEKSI ALAT PELINDUNG DIRI (APD) UNTUK KESELAMATAN DAN KESEHATAN KERJA MENGGUNAKAN YOLOV8”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1175-1182, Aug. 2024.