STUDENT FOCUS DETECTION USING YOU ONLY LOOK ONCE V5 (YOLOV5) ALGORITHM

  • Rosalina Departement of Informatics Engineering, Faculty of Engineering, Universitas Mataram, Indonesia
  • Fitri Bimantoro Departement of Informatics Engineering, Faculty of Engineering, Universitas Mataram, Indonesia
  • I Gede Pasek Suta Wijaya Departement of Informatics Engineering, Faculty of Engineering, Universitas Mataram, Indonesia
Keywords: education, object detection, student, YOLOV5

Abstract

Education has a very important role in life, student involvement in the learning process in the classroom is an important factor in the success of learning. However, some students pay less attention to the lesson, indicating a lack of productivity in learning. The use of machine learning and computer vision techniques has undergone significant development in the last decade and is applied in a variety of applications, including monitoring student attention in the classroom. One of the commonly used techniques in machine learning and computer vision to detect objects is by applying image processing. One of the algorithms implemented for object detection that can provide good results is You Only Look Once. This research proposes the application of YOLOV5 in real time student focus detection and analyzes the performance and computational load of the five YOLOV5 architectures (YOLOV5n, YOLOV5s, YOLOV5m, YOLOV5l, and YOLOV5x) in student surveillance during classroom learning. The dataset used is video data that has been converted into image form, and 297 images are produced.  Where, this dataset is divided into 2 classes, namely the "Focus" and "Not Focus" classes. The results show that YOLOV5x has the highest computational load with large parameter values and GFLOPs. However, in term model performance YOLOV5m provides more optimal results than other architectures, with precision of 83.3%, recall of 85.1%, and mAP@50 of 89.9%. The results of this study show that the proposed YOLOV5 model can be a good performing method in detecting student focus in real time.

Downloads

Download data is not yet available.

References

M. R. Hamandia and Z. Jannati, “Penerapan komunikasi nonverbal: Sebuah alternatif dalam peningkatan perhatian mahasiswa pada proses pembelajaran,” Jurnal Komunikasi Islam dan Kehumasan (JKPI), vol. 4, no. 1, pp. 75–89, 2020.

F. R. Nasution, N. M. Adlika, and B. Tampubolon, “Analisis Perhatian Dan Keterlibatan Siswa Pada Pembelajaran Secara Daring,” Jurnal Pendidikan Sosiologi dan Humaniora, vol. 13, no. 1, p. 91, Feb. 2022, doi: 10.26418/j-psh.v13i1.52321.

“A Novel Architecture for Student’s attention detection in classroom based on Facial and Body expressions,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 7357–7366, Oct. 2020, doi: 10.30534/ijatcse/2020/68952020.

W. Jia et al., “Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector,” IET Image Process, vol. 15, no. 14, pp. 3623–3637, Dec. 2021, doi: 10.1049/ipr2.12295.

J. N. Mindoro, N. U. Pilueta, Y. D. Austria, L. Lolong Lacatan, and R. M. Dellosa, “Capturing Students’ Attention through Visible Behavior: A Prediction Utilizing YOLOv3 Approach,” in 2020 11th IEEE Control and System Graduate Research Colloquium, ICSGRC 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 328–333. doi: 10.1109/ICSGRC49013.2020.9232659.

M. Villa, M. Gofman, S. Mitra, A. Almadan, A. Krishnan, and A. Rattani, “A Survey of Biometric and Machine Learning Methods for Tracking Students’ Attention and Engagement,” in Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 948–955. doi: 10.1109/ICMLA51294.2020.00154.

M. Sarosa and N. Muna, “Implementasi Algoritma You Only Look Once (YOLO) Untuk Deteksi Korban Bencana Alam,” vol. 8, no. 4, 2021, doi: 10.25126/jtiik.202184407.

D. I. Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” Jurnal Pendidikan Tambusai, vol. 6, no. 3, pp. 13971–13982, 2022.

H. Dawami, E. Rachmawati, and M. D. Sulistiyo, “Deteksi Penggunaan Masker Wajah Menggunakan YOLOv5,” eProceedings of Engineering, vol. 10, no. 2, 2023.

Z. Trabelsi, F. Alnajjar, M. M. A. Parambil, M. Gochoo, and L. Ali, “Real-Time Attention Monitoring System for Classroom: A Deep Learning Approach for Student’s Behavior Recognition,” Big Data and Cognitive Computing, vol. 7, no. 1, Mar. 2023, doi: 10.3390/bdcc7010048.

L. Susanti, N. K. Daulay, and B. Intan, “Sistem Absensi Mahasiswa Berbasis Pengenalan Wajah Menggunakan Algoritma YOLOv5,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 640, Apr. 2023, doi: 10.30865/jurikom.v10i2.6032.

O. E. Olorunshola, M. E. Irhebhude, and A. E. Evwiekpaefe, “A Comparative Study of YOLOv5 and YOLOv7 Object Detection Algorithms,” Journal of Computing and Social Informatics, vol. 2, no. 1, pp. 1–12, 2023.

Y. Liu, B. Lu, J. Peng, and Z. Zhang, “Research on the use of YOLOv5 object detection algorithm in mask wearing recognition,” World Scientific Research Journal, vol. 6, no. 11, pp. 276–284, 2020.

N. Hidayat, S. Wahyudi, A. Aufa Diaz, I. Teknologi Sepuluh Nopember, and K. Keputih-Sukolilo, “Pengenalan Individu Melalui Identifikasi Wajah Menggunakan Metode You Only Look Once (YOLOv5) (Individual Recognition Through Face Identification Based On You Only Look Once (YOLOv5) Method).” [Online]. Available: https://magestic.unej.ac.id/

B. A. Septyanto, S. A. Wibowo, and C. Setianingsih, “Implementasi Face Recognition Berbasis Deep Neural Network Sebagai Sistem Kendali Pada Quadcopter,” eProceedings of Engineering, vol. 9, no. 6, 2023.

A. Imran, C. Setianingsih, and R. E. Saputra, “Deteksi Pelanggaran Pada Bahu Jalan Tol Dengan Intelligent Transportation System Menggunakan Algoritma Yolov5,” eProceedings of Engineering, vol. 10, no. 5, 2023.

G. C. Utami, C. R. Widiawati, and P. Subarkah, “Detection of Indonesian Food to Estimate Nutritional Information Using YOLOv5,” Teknika, vol. 12, no. 2, pp. 158–165, Jun. 2023, doi: 10.34148/teknika.v12i2.636.

L. Suroiyah, Y. Rahmawati, and R. Dijaya, “Facemask Detection Using YOLO V5,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1277–1286, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1043.

L. S. Riva and J. Jayanta, “Deteksi Penyakit Tanaman Cabai Menggunakan Algoritma YOLOv5 Dengan Variasi Pembagian Data,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 248–254, 2023.

Y. Zhao and S. Geng, “Face occlusion detection algorithm based on yolov5,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Sep. 2021. doi: 10.1088/1742-6596/2031/1/012053.

I. P. Sary, S. Andromeda, and E. U. Armin, “Performance Comparison of YOLOv5 and YOLOv8 Architectures in Human Detection using Aerial Images,” Ultima Computing: Jurnal Sistem Komputer, vol. 15, no. 1, pp. 8–13, 2023.

Z. J. Zheng, G. J. Liang, H. Bin Luo, and H. C. Yin, “Attention assessment based on multi-view classroom behaviour recognition,” IET Computer Vision, 2022, doi: 10.1049/cvi2.12146.

E. Casas, L. Ramos, E. Bendek, and F. Rivas-Echeverria, “Assessing the Effectiveness of YOLO Architectures for Smoke and Wildfire Detection,” IEEE Access, vol. 11, pp. 96554–96583, 2023, doi: 10.1109/ACCESS.2023.3312217.

U. Nepal and H. Eslamiat, “Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs,” Sensors, vol. 22, no. 2, Jan. 2022, doi: 10.3390/s22020464.

K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” Jurnal Teknik ITS, vol. 10, no. 1, pp. A50–A55, 2021.

Published
2024-05-08
How to Cite
[1]
R. Rosalina, F. Bimantoro, and I. G. P. Suta Wijaya, “STUDENT FOCUS DETECTION USING YOU ONLY LOOK ONCE V5 (YOLOV5) ALGORITHM”, J. Tek. Inform. (JUTIF), vol. 5, no. 5, pp. 1203-1211, May 2024.