Development of a Convolutional Neural Network Method for Classifying Ripeness Levels of Servo Variety Tomatoes
DOI:
https://doi.org/10.52436/1.jutif.2025.6.2.4168Keywords:
Batch Normalization, Classification, CNN, Dropout, TomatoAbstract
The distribution of tomatoes in Indonesia is huge, making it an important commodity in the agricultural sector. However, manual classification of tomato ripeness can lead to human error and decrease supply chain efficiency. Therefore, an automated system capable of classifying tomatoes quickly and accurately is needed, in order to reduce the potential for human error and improve supply chain efficiency. This research aims to develop the Convolutional Neural Network (CNN) method to improve the accuracy of tomato ripeness detection through modifications to the architecture, such as reducing several layers, adding batch normalization, and adding dropouts. The dataset used in this study consists of 500 images taken by the researcher himself which are divided into 5 classes, namely unriped, half-riped, riped, half-rotten, and rotten, with each class containing 100 images. There are 3 proposed CNN models, namely the standard model, as well as the addition of batch normalization and dropout in the architecture. The results showed that the proposed model 3 with the addition of dropout on several layers of its architecture is the optimal model with a parameter of 2.4 million and using a batch size of 16 resulting in an accuracy of 98%, as well as precision, recall, and F1-score values of 98%. With these results, the proposed CNN model is effective in identifying the ripeness level of tomato fruit. This research is expected to be applied in the agricultural industry to improve the efficiency of sorting and distributing tomato fruits according to the desired quality standards.
Downloads
References
A. Sadri Agung, A. S. Farid Dirgantara, M. Syachrul Hersyam, A. Baso Kaswar, and D. Darma Andayani, “Classification of Tomato Quality Based on Color Features And Skin Characteristics Using Image Processing Based Artificial Neural Network,” vol. 4, no. 5, pp. 1021–1032, 2023, doi: 10.52436/1.jutif.2023.4.5.780.
S. Sanjaya, “Aplikasi pengenalan tingkat kematangan buah tomat menggunakan fitur warna hsv berbasis android,” Jurnal Teknoinfo, vol. 16, no. 1, pp. 26–33, 2022.
H. S. Mputu, A. Abdel-Mawgood, A. Shimada, and M. S. Sayed, “Tomato Quality Classification Based on Transfer Learning Feature Extraction and Machine Learning Algorithm Classifiers,” IEEE Access, vol. 12, pp. 8283–8295, 2024, doi: 10.1109/ACCESS.2024.3352745.
P. Li, J. Zheng, P. Li, H. Long, M. Li, and L. Gao, “Tomato maturity detection and counting model based on MHSA-YOLOv8,” Sensors, vol. 23, no. 15, p. 6701, 2023.
A. M. K. Putri and A. F. Rozi, “Implementasi Convutional Neural Network Dalam Menentukan Tingkat Kematangan Mentimun Dan Tomat Berdasarkan Warna Kulit,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 5, pp. 10388–10394, 2024.
F. Su, Y. Zhao, G. Wang, P. Liu, Y. Yan, and L. Zu, “Tomato maturity classification based on SE-YOLOv3-MobileNetV1 network under nature greenhouse environment,” Agronomy, vol. 12, no. 7, p. 1638, 2022.
S. M. Nassiri, A. Tahavoor, and A. Jafari, “Fuzzy logic classification of mature tomatoes based on physical properties fusion,” Information Processing in Agriculture, vol. 9, no. 4, pp. 547– 555, 2022.
I. R. M. Fatah, A. H. Ginting, and W. T. Ina, “Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Warna,” JTekEL: Jurnal Teknik Elektro, vol. 1, no. 1, pp. 20–25, 2024.
T. Kim, D.-H. Lee, K.-C. Kim, T. Choi, and J. M. Yu, “Tomato maturity estimation using deep neural network,” Applied Sciences, vol. 13, no. 1, p. 412, 2022.
N. Astrianda, “Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine,” VOCATECH: Vocational Education and Technology Journal, vol. 1, no. 2, pp. 45–52, Apr. 2020, doi: 10.38038/vocatech.v1i2.27.
B. M. Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Generation Journal, vol. 7, no. 3, pp. 93–101, 2023.
L. Ningsih and P. Cholidhazia, “Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm,” RIGGS: Journal of Artificial Intelligence and Digital Business, vol. 1, no. 1, pp. 25–30, Jul. 2022, doi: 10.31004/riggs.v1i1.10.
A. B. M. Widat, A. Baijuri, and F. Lazim, “Klasifikasi Kematangan Citra Buah Tomat Berdasarkan Ekstraksi Fitur Warna Menggunakan Metode K-NN,” G-Tech: Jurnal Teknologi Terapan, vol. 8, no. 3, pp. 1779–1786, 2024.
B. S. Utami, “Komparatif Antara Pendekatan Tradisional Dan Metode Deep Learning Dalam Pengenalan Tulisan Tangan Pada Aplikasi Komputer Visi,” Jurnal Teknologi Terkini, vol. 3, no. 7, 2023.
N. A. Ayunda, E. Haryatmi, and T. A. Riyadi, “Classification of Tomato Ripeness Based on Convolutional Neural Network Methods,” Journal of Information Systems and Informatics, vol. 5, no. 4, pp. 1658–1675, Dec. 2023, doi: 10.51519/journalisi.v5i4.613.
K. S. Nurbidin and I. K. G. Suhartana, "Identifikasi Tingkat Kematangan Buah Tomat Menggunakan Convolution Neural Network (CNN)," Jurnal Nasional Teknologi Informasi dan Aplikasinya, vol. 1, no. 1, pp. 747-750, Nov. 2022.
T. Hidayat, M. Fatchan, and W. Hadikristanto, “CNN Algorithm Approach for Classification of Tomato Fruit Maturity Levels,” International Journal of Sustainable Applied Sciences, vol. 2, pp. 421–432, May 2024, doi: 10.59890/ijsas.v2i5.1862.
S. R. Nagesh Appe, G. Arulselvi, and G. Balaji, “Tomato Ripeness Detection and Classification using VGG based CNN Models”, Int J Intell Syst Appl Eng, vol. 11, no. 1, pp. 296–302, Feb. 2023.
U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, “Klasifikasi penyakit padi berdasarkan citra daun menggunakan model terlatih resnet101,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 6, pp. 1216–1222, 2021.
E. Zidni and M. Akbar, “Klasifikasi Citra Makanan Khas Kota Pasuruan menggunakan Convolutional Neural Network,” 2024.
E. S. Budi, A. N. Chan, P. P. Alda, and M. A. F. Idris, “Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” Resolusi: Rekayasa Teknik Informatika dan Informasi, vol. 4, no. 5, pp. 502–509, 2024.
I. Salehin and D. K. Kang, “A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Domain,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/electronics12143106.
A. S. Riyadi, I. P. Wardhani, D. S. Widayati, and K. Kunci, “Klasifikasi Citra Anjing Dan Kucing Menggunakan Metode Convolutional Neural Network (CNN),” Universitas Gunadarma Jl. Margonda Raya No, vol. 5, no. 1, p. 12140, 2021.
A. L. Tandung, M. Abduh, M. Arafah, and A. Halid, “Klasifikasi Objek Kapal Berbasis Deep Learning Untuk Maritime Surveillance,” EDUCATIONAL: Jurnal Inovasi Pendidikan & Pengajaran, vol. 4, no. 4, pp. 360–386, 2024.
S. S. S. Palakodati, V. R. R. Chirra, Y. Dasari, and S. Bulla, “Fresh and rotten fruits classification using CNN and transfer learning,” Revue d’Intelligence Artificielle, vol. 34, no. 5, pp. 617–622, Oct. 2020, doi: 10.18280/ria.340512.
D. Bharali, K. C. Bora, and R. Sarkar, “An Improved CNN Model for Identifying Tomato Leaf Diseases,” Transdiscipl J Eng Sci, vol. 15, pp. 17–38, Jan. 2024, doi: 10.22545/2024/00253.
M. Genç and F. Akar, “Detection of Lung Cancer Cells Using Deep Learning Methods,” Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 2, pp. 445–459, Jun. 2024, doi: 10.17798/bitlisfen.1422869.
E. Sentosa, D. I. Mulyana, A. F. Cahyana, and N. G. Pramuditasari, “Implementasi Image Classification Pada Batik Motif Bali Dengan Data Augmentation dan Convolutional Neural Network,” Jurnal Pendidikan Tambusai, vol. 6, no. 1, pp. 1451–1463, 2022.
G. Arther Sandag, J. Waworundeng Universitas Klabat, J. Arnold Mononutu, and A. -Minahasa Utara, “Identifikasi Foto Fashion Dengan Menggunakan Convolutional Neural Network (CNN) Identify Fashion Images Using Convolutional Neural Network (CNN),” Cogito Smart Journal
|, vol. 7, no. 2, p. 2021.
M. Raihan, R. Allaam, and A. T. Wibowo, “Klasifikasi Genus Tanaman Anggrek Menggunakan Metode Convolutional Neural Network (CNN),” e-Prceeding Eng, vol. 8, no. 2,
pp. 3147–3179, 2021.
M. S. Gumilang and D. Avianto, “Recognition Of Real-Time Handwritten Characters Using Convolutional Neural Network Architecture,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 5,
pp. 1143–1150, Oct. 2023, doi: 10.52436/1.jutif.2023.4.5.993.
N. Saefulloh, J. Indra, and A. Ratna Juwita, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Kecacatan Pada Proses Welding di Perusahaan Manufacturing,” Technology and Science (BITS), vol. 6, no. 1, pp. 387–394, 2024, doi: 10.47065/bits.v6i1.5321.
I. Bakti and M. Firdaus, “Klasifikasi File Gambar Hasil X-Ray Paru-Paru Dengan Arsitektur Convolution Neural Network (CNN),” JIFOTECH (Journal of Information Technology, vol. 3, no. 1, 2023.
O. Fagbohungbe and L. Qian, “The Effect of Batch Normalization on Noise Resistant Property of Deep Learning Models,” IEEE Access, vol. 10, pp. 127728–127741, 2022, doi: 10.1109/ACCESS.2022.3206958.
A. Lutfhi, “The effect of layer batch normalization and droupout of CNN model performance on facial expression classification,” JOIV: International Journal on Informatics Visualization, vol. 6, no. 2–2, pp. 481–488, 2022.
R. O. Ogundokun, R. Maskeliunas, S. Misra, and R. Damaševičius, “Improved CNN based on batch normalization and adam optimizer,” in International Conference on Computational Science and Its Applications, Springer, 2022, pp. 593–604.
I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020, doi: 10.1016/j.icte.2020.04.010.
G. P. H. P. Gusti, E. Haerani, F. Syafria, F. Yanto, and S. K. Gusti, “Implementasi Algoritma Convolutional Neural Network (Resnet-50) untuk Klasifikasi Kanker Kulit Benign dan Malignant,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 3, pp. 984–992, Jun. 2024, doi: 10.57152/malcom.v4i3.1398.
C. Mahaputri, Y. Kristian, and E. Setyati, “Pengenalan Makanan Tradisional Indonesia Beserta Bahan-bahannya dengan Memanfaatkan DCNN Transfer Learning,” Journal of Intelligent System and Computation, vol. 4, no. 2, pp. 61–68, Oct. 2022, doi: 10.52985/insyst.v4i2.252.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rosalina, Ario Yudo Husodo, I Gede Pasek Suta Wijaya

This work is licensed under a Creative Commons Attribution 4.0 International License.