CLASSIFICATION OF SUGAR LEVELS IN BANANA FRUIT BASED ON COLOR FEATURES USING DIGITAL IMAGE PROCESSING-BASED ARTIFICIAL NEURAL NETWORKS

  • Mushawwir S Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Rafli Ananta Burhan Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Tarisa Yuliarni Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Andi Baso Kaswar Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
  • Dyah Darma Andayani Department of Informatics and Computer Engineering, Faculty of Engineering, Universitas Negeri Makassar, Indonesia
Keywords: artificial neural networks, bananas, classification, RGB, sugar levels

Abstract

Bananas are a fruit that has many benefits for human health, because bananas contain a source of vitamins, minerals and carbohydrates. Bananas are a fruit that is often consumed by Indonesian people because of their sweet taste. With this sweet taste, of course bananas have quite high sugar levels, so diabetes sufferers must pay attention to this when choosing bananas. The level of sugar content in bananas can be distinguished by looking at the ripeness of the fruit. To differentiate between them, of course, we use human vision, but human observation also has weaknesses and errors can occur in the process, whether due to lack of lighting, visual impairment, or age. Therefore, this study proposes a classification of the level of sugar content in bananas in the RGB color space using artificial neural networks (ANN). The proposed method consists of 6 stages, namely image acquisition, preprocessing, segmentation, morphological operations, RGB feature extraction, and classification stage. In this study, 300 samples of banana fruit images were used. 210 datasets will be used for training and 90 datasets for testing. The dataset is divided into 3 classes, namely low sugar content, medium sugar content, and high sugar content. Based on the test results that have been carried out, the accuracy of the classification results is 97.78%, the misclassification is 2.22%, and the computing time is 375 seconds. These results show that the proposed method can accurately classify the level of sugar content in bananas.

Downloads

Download data is not yet available.

References

D. Bayu, “Produksi Pisang di Indonesia Capai 8,74 Juta Ton pada 2021,” DataIndonesia.id, 2022. https://dataindonesia.id/sektor-riil/detail/produksi-pisang-di-indonesia-capai-874-juta-ton-pada-2021

P. K. RI, “Khasiat dan Manfaat Pisang,” Kementrian Kesehatan Republik Indonesia, 2018. http://p2ptm.kemkes.go.id/tag/khasiat-dan-manfaat-pisang#:~:text=Sumber Karbohidrat dan Vitamin A,bagi tubuh untuk tetap bugar.

J. S. Sidhu and T. A. Zafar, “Bioactive compounds in banana fruits and their health benefits,” Food Qual. Saf., vol. 2, no. 4, pp. 183–188, 2018, doi: 10.1093/fqsafe/fyy019.

A. L. Falcomer, R. F. R. Riquette, B. R. De Lima, V. C. Ginani, and R. P. Zandonadi, “Health benefits of green banana consumption: A systematic review,” Nutrients, vol. 11, no. 6, pp. 1–22, 2019, doi: 10.3390/nu11061222.

E. S. Costa et al., “Beneficial effects of green banana biomass consumption in patients with pre-diabetes and type 2 diabetes: A randomised controlled trial,” Br. J. Nutr., vol. 121, no. 12, pp. 1365–1375, 2019, doi: 10.1017/S0007114519000576.

H. Apriliani, “Mengetahui Manfaat Pisang Berdasarkan Warna Kulitnya,” 2021. https://voi.id/lifestyle/39137/mengetahui-manfaat-pisang-berdasarkan-warna-kulitnya (accessed Nov. 25, 2022).

J. Indrawan, “Apakah Mengkonsumsi Buah Pisang Baik Untuk Penderita Diabetes?,” 2021. https://bangka.sonora.id/read/502542708/apakah-mengkonsumsi-buah-pisang-baik-untuk-penderita-diabetes?page=all (accessed Nov. 25, 2022).

et al., “Analisis Kandungan Zat Gizi, Pati Resisten, Indeks Glikemik, Beban Glikemik dan Daya Terima Cookies Tepung Pisang Kepok (Musa paradisiaca) Termodifikasi Enzimatis dan Tepung Kacang Hijau (Vigna radiate),” J. Apl. Teknol. Pangan, vol. 9, no. 3, pp. 101–107, 2020, doi: 10.17728/jatp.8148.

Alfian Firlansyah, Andi Baso Kaswar, and Andi Akram Nur Risal, “Klasifikasi Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna Menggunakan JST,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 2, pp. 55–60, 2021, doi: 10.36805/technoxplore.v6i2.1438.

Sabariah, Nurhasanah, and J. Sampurno, “Aplikasi Metode Fraktal untuk Identifikasi Kadar Gula pada Salak Berdasarkan Pola Kulitnya,” Prism. Fis., vol. V, no. 1, pp. 17–20, 2017.

Iman, Nurhasanah, and J. Sampurno, “Analisis Fraktal Untuk Identifikasi Kadar Gula Rambutan dengan Metode Box-Counting,” Prism. Fis., vol. 6, no. 2, pp. 57–60, 2018.

A. Harjoko and U. G. Mada, “Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang Menggunakan Jaringan Saraf Tiruan,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 4, no. 1, pp. 57–68, 2014, doi: 10.22146/ijeis.4222.

A. B. K. Jusrawati1, Ayu Futri, “Klasifikasi Tingkat Kematangan Buah Pisang Dalam Ruang Warna RGB Menggunakan Jaringan Syaraf Tiruan (JST).,” Jessi, vol. 02 Nomor 1, no. May, pp. 52–57, 2021.

M. R. Rasyid, Z. Tahir, and N. Syafaruddin, “Digital Image Processing for Detecting Industrial Machine Work Failure with Quantization Vector Learning Method,” J. Pekommas, vol. 4, no. 2, p. 131, 2019, doi: 10.30818/jpkm.2019.2040203.

I. Zeger, S. Grgic, J. Vukovic, and G. Sisul, “Grayscale Image Colorization Methods: Overview and Evaluation,” IEEE Access, vol. 9, pp. 113326–113346, 2021, doi: 10.1109/ACCESS.2021.3104515.

N. Otsu, “OTSU paper,” IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62–66, 1979.

I. A. Muwakhid and D. Nurdiyah, “Otsu Method For Image Finish Segmentation With Components of Hue Saturation Value,” Transformatika, vol. 15, no. 2, pp. 67–73, 2018.

A. Susanto, “Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor,” Pseudocode, vol. 6, no. 1, pp. 49–57, 2019, doi: 10.33369/pseudocode.6.1.49-57.

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.

C. Imam, E. W. Hidayat, and N. I. Kurniati, “Classification of Meat Imagery Using Artificial Neural Network Method and Texture Feature Extraction By Gray Level Co-Occurrence Matrix Method,” J. Tek. Inform., vol. 2, no. 1, pp. 1–8, 2021, doi: 10.20884/1.jutif.2021.2.1.37.

N. Feri Rahmadani, Akim M.H. Pardede, “Jaringan Syaraf Tiruan Prediksi Jumlah Pengiriman Barang Menggunakan Metode Backpropagation ( Studi Kasus : Kantor Pos Binjai ),” Jtik (Jurnal Tek. Inform. Kaputama), vol. 5, no. 1, pp. 100–106, 2021, [Online]. Available: https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/444/375

M. Yollanda, D. Devianto, and H. Yozza, “Model Non-Linear Pada Jaringan Saraf Tiruan,” J. Mat. UNAND, vol. 7, no. 2, p. 89, 2018, doi: 10.25077/jmu.7.2.89-97.2018.

Published
2024-07-29
How to Cite
[1]
M. S, R. A. Burhan, T. Yuliarni, A. B. Kaswar, and D. D. Andayani, “CLASSIFICATION OF SUGAR LEVELS IN BANANA FRUIT BASED ON COLOR FEATURES USING DIGITAL IMAGE PROCESSING-BASED ARTIFICIAL NEURAL NETWORKS”, J. Tek. Inform. (JUTIF), vol. 5, no. 4, pp. 1137-1145, Jul. 2024.