CORRELATION ANALYSIS OF SENTIMENT OF 2024 ELECTION RESULTS AND STOCK MOVEMENTS OF POLITICAL ACTORS IN INDONESIA
Abstract
General elections (elections) are one of the crucial moments in the political life of a country, where the public democratically elects leaders and their deputies to manage the government. Public sentiment towards the results of elections significantly impacts the political stability and economic conditions of a country. This research aims to analyze the relationship between public sentiment towards the 2024 General Elections in Indonesia and changes in the stock prices of political actors using technological approaches and data analysis. The Long Short-Term Memory (LSTM) method is used to classify sentiment based on Twitter data collected with Harvest Tweet. Evaluation of the LSTM model shows an accuracy rate of 90%, precision of 93.6%, and recall of 92.7%. The correlation analysis using the Spearman coefficient indicates a significant negative relationship with a coefficient of 0.402 and a p-value of 0.046. Implementation of an interactive dashboard using Streamlit facilitates visualization of the data used in this study. Recommendations include increasing the amount of training data for sentiment models, exploring alternative correlation methods for deeper analysis, and refining the interface and data integration on the dashboard to enhance user experience and analysis accuracy. This research is expected to contribute to understanding the dynamics of public sentiment and its impact on the stock market in the context of Indonesian politics.
Downloads
References
M. Habibie et al., “Analisis Gejolak Saham Pada Peristiwa Politik Pemilihan Presiden Amerika Serikat 2020 Sektor Food and Beverage,” vol. 27, no. 2, 2022.
Z. Aprilia, “Prabowo Menang Quick Count, IHSG Lompat-Asing Borong Rp2,73 T Saham RI,” CNBC Indonesia. Accessed: Feb. 26, 2024. [Online]. Available: https://www.cnbcindonesia.com/market/20240216065123-17-514885/prabowo-menang-quick-count-ihsg-lompat-asing-borong-rp273-t-saham-ri
APJII, “Pengguna Internet di Indonesia Meningkat di 2024,” https://apjii.or.id/berita/d/pengguna-internet-di-indonesia-meningkat-di-2024.
Y. Mao, Q. Liu, and Y. Zhang, “Sentiment analysis methods, applications, and challenges: A systematic literature review,” Apr. 01, 2024, King Saud bin Abdulaziz University. doi: 10.1016/j.jksuci.2024.102048.
A. A. Firdaus, A. Yudhana, I. Riadi, and Mahsun, “Indonesian presidential election sentiment: Dataset of response public before 2024,” Data Brief, vol. 52, Feb. 2024, doi: 10.1016/j.dib.2023.109993.
M. M. Abdelgwad, T. H. A Soliman, A. I.Taloba, and M. F. Farghaly, “Arabic aspect based sentiment analysis using bidirectional GRU based models,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 9, pp. 6652–6662, Oct. 2022, doi: 10.1016/j.jksuci.2021.08.030.
A. Nurkholis and Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 8, no. 2, pp. 299–303, Nov. 2022.
Y. Romadhoni, K. Fahmi, and H. Holle, “Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM,” vol. 7, no. 2, 2022.
A. Heinen and A. Valdesogo, “Spearman rank correlation of the bivariate Student t and scale mixtures of normal distributions,” J Multivar Anal, vol. 179, Sep. 2020, doi: 10.1016/j.jmva.2020.104650.
B. Wang, R. Wang, and Y. Wang, “Compatible matrices of Spearman’s rank correlation,” Stat Probab Lett, vol. 151, pp. 67–72, Aug. 2019, doi: 10.1016/j.spl.2019.03.015.
N. Das, B. Sadhukhan, R. Chatterjee, and S. Chakrabarti, “Integrating sentiment analysis with graph neural networks for enhanced stock prediction: A comprehensive survey,” Mar. 01, 2024, Elsevier Inc. doi: 10.1016/j.dajour.2024.100417.
Gallan V, “LSTM (Long Short Term Memory).” Accessed: Mar. 07, 2024. [Online]. Available: https://medium.com/bina-nusantara-it-division/lstm-long-short-term-memory-d29779e2ebf8
R. C. Staudemeyer and E. R. Morris, “Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks,” p. 19, Sep. 2019, [Online]. Available: http://arxiv.org/abs/1909.09586
W. Tanjung and R. Ramadani, “Analisis korelasi pendapatan masyarakat dengan politik uang dalam pemilu,” JRTI (Jurnal Riset Tindakan Indonesia), vol. 8, no. 1, p. 190, Sep. 2023, doi: 10.29210/30033202000.
W. Tanjung and R. Ramadani, “Analisis korelasi pendapatan masyarakat dengan politik uang dalam pemilu,” JRTI (Jurnal Riset Tindakan Indonesia), vol. 8, no. 1, p. 190, Sep. 2023, doi: 10.29210/30033202000.
M. M. Fahmy, “Confusion matrix in Binary Classification Problems: A Step-by-Step Tutorial,” ERJ, 2022.
A. Vázquez-Ingelmo, F. J. García-Peñalvo, R. Therón, and M. Á. Conde, “Representing data visualization goals and tasks through meta-modeling to tailor information dashboard s,” Applied Sciences (Switzerland), vol. 10, no. 7, Apr. 2020, doi: 10.3390/app10072306.
S. Song, Y. Wang, X. Wang, C. Lin, and K. Hu, “A deep learning-based approach to similarity calculation for UML use case models,” Expert Syst Appl, vol. 251, Apr. 2024.
Copyright (c) 2024 Enjelita Sari, Lasmedi Afuan, Ipung Permadi, Eddy Maryanto
This work is licensed under a Creative Commons Attribution 4.0 International License.