LEAF DISEASE DETECTION IN TOMATO PLANTS USING XCEPTION MODEL IN CONVOLUTIONAL NEURAL NETWORK METHOD

  • Nurhikma Arifin Informatics, Engineering Faculty, Universitas Sulawesi Barat, Indonesia
  • Maratuttahirah Information system, Institut Teknologi Bacharuddin Jusuf Habibie, Indonesia
  • Juprianus Rusman Informatics, Universitas Kristen Indonesia Toraja, Indonesia
  • Muhammad Furqan Rasyid Information science, Nara Institute of science and technology, Japan
Keywords: Convolutional Neural Network (CNN), Leaf Disease, Tomatoes, Xception model

Abstract

This study aims to detect leaf diseases in tomato plants by applying the Xception model in the Convolutional Neural Network (CNN) method. The study categorizes tomato conditions into three main categories: Early Blight, Late Blight, and Healthy. Early Blight is generally infected by specific pathogens that cause spots and damage in the early stages of plant growth, while Late Blight is infected by pathogens in the later stages of the growing season. Meanwhile, the healthy category indicates normal conditions without disease symptoms. The dataset used consists of 300 tomato images, with each category having 100 images. In the model training phase using the fit method in TensorFlow, 17 epochs were performed to teach the model to recognize patterns in tomato leaf disease images in the training dataset. The model testing results on 30 tomato leaf images showed an accuracy rate of 85.84%. This result indicates a positive indication that the developed CNN model performs well in detecting and classifying tomato leaf conditions. Thus, this research can contribute to improving the understanding and management of leaf diseases in tomato plants to support more productive and sustainable agriculture.

Downloads

Download data is not yet available.

References

A. J. Bastari and A. Cherid, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Convolutional Neural Network Dan Implementasi Model H5 Pada Aplikasi Desktop,” J. Sist. Inf. Dan Sist. Komput., vol. 8, no. 2, pp. 199–207, 2023, doi: 10.51717/simkom.v8i2.194.

N. Awalia and A. Primajaya, “Identifikasi Penyakit Leaf Mold Daun Tomat Menggunakan Model Densenet121 Berbasis Transfer Learning,” J. Ilm. Ilmu Komput., vol. 8, no. 1, pp. 49–54, 2022, doi: 10.35329/jiik.v8i1.212.

A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVM dan KNN,” J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 212–215, 2020, doi:doi.org/10.30743/infotekjar.v5i1.2934.

A. A. A. Paliwang, M. R. D. Septian, and M. Cahyanti, “Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network,” J. Sebatik, vol. 24, no. 2, pp. 207–212, 2020.

A. Lawi, N. S. Intizhami, R. Mukhtarom, and S. Amir, “Klasifikasi Penyakit Citra Daun Tanaman Tomat Dengan Ensemble Convolutional Neural Network,” Semin. Nas. Tek. Elektro Dan Inform., vol. 8, no. 1, pp. 239–243, 2022.

S. Sheila, M. K. Anwar, A. B. Saputra, F. R. Pujianto, and I. P. Sari, “Deteksi Penyakit Pada Daun Padi Berbasis Pengolahan Citra Menggunakan Metode Convolutional Neural Network (CNN),” J. Multinetics, vol. 9, no. 1, pp. 27–34, Mei 2023.

E. P. Gemilang and C. Lubis, “Klasifikasi Jenis Penyakit Pada Daun Tomat Dengan Menggunakan Convolutional Neural Network,” J. Ilmu Komput. Dan Sist. Inf., vol. 10, no. 1, pp. 1–6, 2022, doi: https://doi.org/10.24912/jiksi.v10i1.17839.

R. Soekarta, N. Nurdjan, and A. Syah, "Classification of Tomato Plant Diseases Using Convolutional Neural Network (CNN) Method," in Insect Informatics and Security Journal of Information Technology, vol. 8, no. 2, pp. 143–151, March 2023, doi: 10.33506/insect.v8i2.2356.

S. Faisal, T. F. M. Butarbutar, and P. Sirait, “Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun,” J. SIFO Mikroskil, vol. 20, no. 2, pp. 117–134, oktober 2019, doi: https://doi.org/10.55601/jsm.v20i2.670.

A. R. Sujiwanto, R. R. B. Pratomo, and P. Palupingsih, “Analisis Perbandingan Performa Model Klasifikasi Kesehatan Daun Tomat menggunakan Arsitektur VGG, MobileNet, dan Inception V3,” J. Ilmu Komput. Dan Agri Inform., vol. 10, no. 1, pp. 98–110, 2023, doi: doi.org/10.29244/jika.10.1.98-110.

A. T. R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” Telkom Univ. EProceedings Eng., vol. 8, no. 2, pp. 3039–3055, 2021.

H. Bastian, A. Muqoddas, R. A. Pramunendar, and D. P. Prabowo, “Deteksi Penyakit Daun Tomat Menggunakan Konfigurasi Layer pada Metode CNN,” Sci. Eng. Natl. Semin., vol. 8, no. 1, pp. 248–252, 2023.

K. Muchtar, Y. Nurdin, and A. Afdhal, “Pendeteksian Septoria pada Tanaman Tomat dengan Metode Deep Learning berbasis Raspberry Pi,” J. Rekayasa Sistem Dan Teknol. Inf., vol. 5, no. 1, pp. 107–113, 2021, doi: https://doi.org/10.29207/resti.v5i1.2831.

A. J. Rozaqi, A. Sunyoto, and R. Arief, “Deteksi Penyakit pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Citec J., vol. 8, no. 1, pp.22-3, Jan. 2021.

C. R. Kotta, D. Paseru, and M. Sumampouw, “Implementasi Metode Convolutional Neural Network untuk Mendeteksi Penyakit Pada Citra Daun Tomat,” J. Pekommas, vol. 7, no. 2, pp. 123-132, Dec. 2022, doi: 10.56873/jpkm.v7i2.4961.

B. Raharjo, Deep Learning dengan python. Yayasan Prima Agus Teknik, 2022.

A. Jinan and B. H. Hayadi, “Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron),” J. Comput. Eng. Sci., vol. 1, no. 2, pp. 37–44, Apr. 2022.

Published
2024-04-15
How to Cite
[1]
N. Arifin, Maratuttahirah, Juprianus Rusman, and Muhammad Furqan Rasyid, “LEAF DISEASE DETECTION IN TOMATO PLANTS USING XCEPTION MODEL IN CONVOLUTIONAL NEURAL NETWORK METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 2, pp. 571-577, Apr. 2024.