HORTICULTURE SMART FARMING FOR ENHANCED EFFICIENCY IN INDUSTRY 4.0 PERFORMANCE
Abstract
Chili peppers and papayas are important horticultural commodities in Indonesia with high economic value. To enhance productivity and efficiency in cultivating these crops, the application of Smart Farming technology is crucial. This study evaluates the use of image processing and artificial intelligence in the pre-harvest and post-harvest processes for chili peppers and papayas. For the pre-harvest process, data from 50 images of ripe chili peppers on the plant were used. The counting of ripe chilies was performed using HSV color segmentation with two masking processes, resulting in an average accuracy of 82.58%. In the post-harvest phase, 30 images of papayas, consisting of 10 images for each ripeness category—unripe, half-ripe, and ripe—were used. Papaya ripeness classification was carried out using the Support Vector Machine (SVM) algorithm with a Radial Basis Function (RBF) kernel and parameters C = 10 and γ = 10-3, achieving perfect classification accuracy of 100% for all categories. This study underscores the significant potential of Industry 4.0 technologies in enhancing agricultural practices and efficiency in the horticultural sector, providing important contributions to optimizing chili pepper and papaya production.
Downloads
References
N. Arifin, C. N. Insani, and M. R. Rasyid, “Klasifikasi Tingkat Kematangan Buah Tomat menggunakan Computer Vision untuk Smart Agriculture,” J. SAINTIKOM J. Sains Manaj. Inform. Dan Komput., vol. 22, no. 2, p. 509, Aug. 2023, doi: 10.53513/jis.v22i2.8387.
Harahap F. Efisiensi Penggunaan Faktor Produksi Usaha tani Cabai Di Kecamatan Sumowono Kabupaten Semarang. 2013;
Eliyatiningsih E, Mayasari F. Efisiensi Penggunaan Faktor Produksi pada Usaha tani Cabai Merah di Kecamatan Wuluhan Kabupaten Jember. J AGRICA. 2019 Apr 30;12(1):7.
A. Fatah and R. Rahmadewi, “Identifikasi Kematangan Pada Buah Lemon menggunakan Metode HSV dan Multi-Level Thresholding,” JUTECH J. Educ. Technol., vol. 5, no. 1, pp. 78–90, Jun. 2024, doi: 10.31932/jutech.v5i1.3489.
Ismail, Nurhikma Arifin, and Prihastinur, “Klasifikasi Kematangan Buah Naga Berdasarkan Fitur Warna Menggunakan Algoritma Multi-Class Support Vector Machine,” J. Inform. Teknol. Dan Sains, vol. 5, no. 1, pp. 121–126, Feb. 2023, doi: 10.51401/jinteks.v5i1.2203.
Elva Amalia, Andi Nurul Izzah, Tsabita Syalza Billa, Wanda Hamidah, Andi Baso Kaswar, and M. R. Edy, “Deteksi Jumlah Jeruk Menggunakan Metode Tranformasi Hough,” J. Embed. Syst. Secur. Intell. Syst., pp. 24–31, Aug. 2023, doi: 10.59562/jessi.v4i1.470.
Indrabayu, Mar’atuttahirah, Areni IS. Automatic Counting of Chili Ripeness on Computer Vision or Industri 4.0. In: 2019 IEEE International Conference on Industry 40, Artificial Intelligence, and Communications Technology (IAICT) [Internet]. BALI, Indonesia: IEEE; 2019 [cited 2023 Apr 6]. p. 14–8. Available from: https://ieeexplore.ieee.org/document/8784858/
Hasanah S, Fitriyah H, Maulana R. Sistem Penghitung Jeruk Matang pada Kebun berdasarkan Hue,Saturation dan Chrominance-Red menggunakan Algoritma Watershed berbasis Raspberry Pi. J Pengemb Teknol Inf Dan Ilmu Komput. 2019;3 No. 11:10848–54.
Pandey, C., Vishwakarma, J., Khan, M. R., Rajpoot, S. C., Sethy, P. K., Nayak, B. B., Behera, S.K., & Biswas, P. (2021). An automated chilli yield estimation approach based on image processing. Recent Trends in Communication https://doi.org/10.1201/9781003193838-5. and Electronics, September, 24–28.
J. Pardede, M. G. Husada, A. N. Hermana, and S. A. Rumapea, “Fruit Ripeness Based on RGB, HSV, HSL, L a b Color Feature Using SVM,” in 2019 International Conference of Computer Science and Information Technology (ICoSNIKOM), Nov. 2019, pp. 1–5. doi: 10.1109/ICoSNIKOM48755.2019.9111486
J. A. M. Galindo, J. E. C. Rosal, and J. F. Villaverde, “Ripeness Classification of Cacao Using Cepstral-Based Statistical Features and Support Vector Machine,” in 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), Sep. 2022, pp. 15. doi: 10.1109/IICAIET55139.2022.9936807.
B. Maulana Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Gener. J., vol. 7, no. 3, pp. 64–72, Nov. 2023, doi: 10.29407/gj.v7i3.21092.L.
A. Hamzah, E. Susanti, and R. M. Lestari, “Klasifikasi Kematangan Buah Alpukat Mentega Berdasarkan Fitur Warna Menggunakan Support Vector Machine (SVM),” vol. 6, no. 1, pp. 108–120, 2024.
Zhu and P. Spachos, “Support vector machine and YOLO for a mobile food grading system,” Internet Things, vol. 13, p. 100359, Mar. 2021, doi: 10.1016/j.iot.2021.100359.
K. Leon, D. Mery, F. Pedreschi, and J. Leon, “Color measurement in L∗ a∗ b∗ units from RGB digital images,” Food Res. Int., vol. 39, no. 10, pp. 1084–1091, 2006.
I. S. Areni, I. Amirullah, and N. Arifin, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,” J. Penelit. Enj., vol. 23, no. 2, pp. 113–116, Nov. 2019, doi: 10.25042/jpe.112019.03.
Ismail, Nurhikma Arifin, and Prihastinur,“Klasifikasi Kematangan Buah Naga Berdasarkan Fitur Warna Menggunakan Algoritma Multi-Class Support Vector Machine,” J. Inform. Teknol. Dan Sains, vol. 5, no. 1, pp. 121–126, Feb. 2023, doi: 10.51401/jinteks.v5i1.2203.
Copyright (c) 2024 Nurhikma Arifin, Chairi Nur Insani, Milasari Milasari, Muhammad Furqan Rasyid
This work is licensed under a Creative Commons Attribution 4.0 International License.