COMPARISON OF NAÏVE BAYES ALGORITHM AND SUPPORT VECTOR MACHINE IN SENTIMENT ANALYSIS OF BOYCOTT ISRAELI PRODUCTS ON TWITTER
Abstract
The Israeli-Palestinian conflict has captured the attention of Indonesians and even the world for decades, with the death toll reaching 17,000 Palestinians. Indonesians have expressed various opinions, including a proposed boycott of products that allegedly support Israel as a form of protest against the ongoing conflict. This study explores the opinions and sentiments of the Indonesian people regarding the Israel-Palestine conflict and the efforts to boycott Israeli products on social media twitter. This study aims to compare the accuracy of the two algorithms in classifying sentiment towards boycotting Israeli products. A total of 2288 comment data were processed using the Naïve Bayes and Support Vector Machine (SVM) algorithm classification methods. The results show that the Naïve Bayes algorithm has higher accuracy with a data division ratio of 70:30 and 80:30 for training data and testing data. Accuracy results with 70:30 data division reached 84% using the Naïve Bayes algorithm model, while the SVM algorithm model reached 78%. And the accuracy results with 80:20 data division reached 85% using the Naïve Bayes algorithm model, with the SVM algorithm model reaching 84%. This study provides an understanding of the concept of text mining and data mining and can be a reference for similar research.
Downloads
References
A. Tiara Susilawati, A. H. Tiara Susilawati Universitas Muhammadiyah Kalimantan Timur Nur Anjeni Lestari Universitas Muhammadiyah Kalimantan Timur Puput Alpria Nina Universitas Muhammadiyah Kalimantan Timur Jl Ir Juanda No, K. Samarinda Ulu, K. Samarinda, and K. Timur, “Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes,” J. Ilm. Mhs., vol. 2, no. 1, pp. 26–35, 2024, [Online]. Available: https://doi.org/10.59603/niantanasikka.v2i1.240
cnbcindonesia.com, “9 Update Gaza, Korban Tewas Tembus 17 Ribu-Israel Makin Gila,” cnbcindonesia.com. Accessed: Jan. 01, 2024. [Online]. Available: https://www.cnbcindonesia.com/news/20231208190322-4-495782/9-update-gaza-korban-tewas-tembus-17-ribu-israel-makin-gila
pji.uma.ac.id, “Pengertian, Sejarah dan Manfaat Twitter untuk Kaum Muda Milenial,” pji.uma.ac.id. Accessed: Jan. 02, 2024. [Online]. Available: https://pji.uma.ac.id/index.php/2021/11/05/pengertian-sejarah-dan-manfaat-twitter-untuk-kaum-muda-milenial/
C. M. Annur, “Jumlah Pengguna Twitter Indonesia Duduki Peringkat ke-4 Dunia per Juli 2023,” databoks.katadata.co.id. Accessed: Jan. 02, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/11/01/jumlah-pengguna-twitter-indonesia-duduki-peringkat-ke-4-dunia-per-juli-2023
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.
Mwendwa, “A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data,” Physiol. Behav., vol. 176, no. 3, pp. 139–148, 2019, doi: 10.1016/j.ijmedinf.2019.02.008.A.
A. Nursalim, R. Novita, I. Systems, and S. Program, “Sentiment Analysis of Comments on Google Play Store , Twitter and Youtube To the Mypertamina Application With Support Vector Analisis Sentimen Komentar Pada Google Play Store , Twitter Dan Youtube Terhadap Aplikasi Mypertamina Dengan Support,” vol. 4, no. 6, pp. 1305–1312, 2023.
V. A. Flores, L. Jasa, and L. Linawati, “Analisis Sentimen untuk Mengetahui Kelemahan dan Kelebihan Pesaing Bisnis Rumah Makan Berdasarkan Komentar Positif dan Negatif di Instagram,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 1, p. 49, 2020, doi: 10.24843/mite.2020.v19i01.p07.
K. A. Rokhman, B. Berlilana, and P. Arsi, “Perbandingan Metode Support Vector Machine Dan Decision Tree Untuk Analisis Sentimen Review Komentar Pada Aplikasi Transportasi Online,” J. Inf. Syst. Manag., vol. 3, no. 1, pp. 1–7, 2021, doi: 10.24076/joism.2021v3i1.341.
A. Tejawati, A. Septiarini, R. Rismawati, and N. Puspitasari, “Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Klasifikasi Konten Berita,” J. Tek. Inform., vol. 4, no. 2, pp. 401–412, 2023.
M. Ardiansyah, A. Sunyoto, and E. T. Luthfi, “Analisis Perbandingan Akurasi Algoritma Naïve Bayes Dan C4.5 untuk Klasifikasi Diabetes,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 147–156, 2021, doi: 10.29408/edumatic.v5i2.3424.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” J. Data Min. dan Sist. Inf., vol. 2, no. 1, p. 31, 2021, doi: 10.33365/jdmsi.v2i1.1021.
H. Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 211–220, 2020, doi: 10.33480/jitk.v5i2.1181.
D. A. Otchere, T. O. Arbi Ganat, R. Gholami, and S. Ridha, “Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models,” J. Pet. Sci. Eng., vol. 200, no. December 2020, p. 108182, 2021, doi: 10.1016/j.petrol.2020.108182.
H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” J. Inf. Technol. Ampera, vol. 1, no. 3, pp. 133–143, 2020, doi: 10.51519/journalita.volume1.isssue3.year2020.page133-143.
H. Sujadi, “Analisis Sentimen Pengguna Media Sosial Twitter Terhadap Wabah Covid-19 Dengan Metode Naive Bayes Classifier Dan Support Vector Machine,” INFOTECH J., vol. 8, no. 1, pp. 22–27, 2022, doi: 10.31949/infotech.v8i1.1883.
H. Setiawan, E. Utami, and S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” J. Komtika (Komputasi dan Inform., vol. 5, no. 1, pp. 43–51, 2021, doi: 10.31603/komtika.v5i1.5189.
Rina Noviana and Isram Rasal, “Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter,” J. Tek. dan Sci., vol. 2, no. 2, pp. 51–60, 2023, doi: 10.56127/jts.v2i2.791.
A. C. Khotimah and E. Utami, “Comparison Naive Bayes Classifier, K-Nearest Neighbor, and Support Vector Machine in the classification of individual on twitter account,” J. Tek. Inform., vol. 3, no. 3, pp. 673–680, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.254
S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.
M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J. STIKI Inform. J., vol. 10, no. 2, pp. 71–76, 2020.
I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine,” J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.
A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
I. Kurniawan, A. Lia Hananto, S. Shofia Hilabi, A. Hananto, B. Priyatna, and A. Yuniar Rahman, “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: http://jurnal.mdp.ac.id.
Copyright (c) 2024 Laisha Amilna Hayurian, Nirwana Hendrastuty
This work is licensed under a Creative Commons Attribution 4.0 International License.