THE INFLUENCE OF FEATURE EXTRACTION ON AUTOMATIC TEXT SUMMARIZATION USING GENETIC ALGORITHM
Abstract
Text summarization using extraction methods is a technique that summarizes by retaining a subset of sentences to create a summary. There are two types of documents commonly used for summarization: single document and multi-document. Multi-document refers to documents originating from one or more sources that contain several main ideas. The data used in this research is obtained from the E-lapor DIY website, consisting of 1000 data entries. E-Lapor DIY is a website provided by the DIY government to accommodate all public aspirations and complaints, such as damaged roads, broken traffic lights, insufficient street lighting, litter in public places, and more. The accumulation of data and the delayed response time has become an issue for the government in addressing these complaints. This research aims to consider the impact of using feature extraction for text summarization using genetic algorithms. The feature extraction compared in this research is the influence of sentence position in feature extraction. The results obtained show that Precision testing using F1 is 0.64, and without using F1, it is 0.66. Recall testing using F1 is 0.65, and without using F1, it is 0.68. F-Measure testing using F1 is 0.65, and without using F1, it is 0.68. This testing using the algorithm can be an interesting alternative for more time-efficient text summarization.
Downloads
References
A. Annaafi, Engkus, and M. I. Nur, “Mekanisme Pengaduan Dan Responsivitas Kinerja Pegawai Pada Badan Pertanahan Nasional Kabupaten Bandung,” J. Ilm. Hosp., vol. 11, no. 2, pp. 443–455, 2022.
M. F. M. Hutasuhut and R. Rosnelly, “Perancangan Dan Implementasi Sistem Pengaduan Dan Pelayanan Masyarakat Berbasis Mobile,” J. Info Digit, vol. 1, no. 2, pp. 756–769, 2023.
I. Muslim, K. Karo, A. Perdana, S. Dewi, and I. Komputer, “Implementasi Text Summarization Pada Review Aplikasi Digital Library System Menggunakan Metode Maximum Marginal Relevance,” vol. 4, no. 1, 2024.
Halimah, Surya Agustian, and Siti Ramadhani, “Peringkasan teks otomatis (automated text summarization) pada artikel berbahasa indonesia menggunakan algoritma lexrank,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 3, pp. 371–381, 2022, doi: 10.37859/coscitech.v3i3.4300.
A. A. Fattahila, A. Romadhony, and S. Al Faraby, “Peringkasan Artikel Berita Menggunakan Pendekatan Abstraktif Dengan Model Transformers,” vol. 10, no. 5, pp. 4980–4986, 2023.
N. F. Saraswati, Indriati, and R. S. Perdana, “Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 5494–5502, 2018, doi: 10.1016/s1010-6030(01)00380-x.
G. A. Pradnyana and I. K. A. Mogi, “Implementasi Automated Text Summarization Untuk Dokumen Tunggal Berbahasa Indonesia Dengan Menggunakan Graph-Based,” J. Ilm. NERO, vol. 1, no. 2, pp. 33–46, 2014.
W. Pratama, R. Ilyas, and F. Kasyidi, “Peringkasan Otomatis Makalah Menggunakan Maximum Marginal Relevance,” Informatics Digit. Expert, vol. 3, no. 1, pp. 32–37, 2022, doi: 10.36423/index.v3i1.677.
Y. Yuliska and K. U. Syaliman, “Literatur Review Terhadap Metode, Aplikasi dan Dataset Peringkasan Dokumen Teks Otomatis untuk Teks Berbahasa Indonesia,” IT J. Res. Dev., vol. 5, no. 1, pp. 19–31, 2020, doi: 10.25299/itjrd.2020.vol5(1).4688.
M. K. Fajarlestari and I. B. Suban, “Kombinasi Crossover dan Mutasi Terbaik pada Algoritma Genetika dalam Penjadwalan Mata Kuliah,” Techno.Com, vol. 22, no. 4, pp. 843–853, 2023, doi: 10.33633/tc.v22i4.9298.
S. B. Saputra and E. W. Pamungkas, “Development of Scheduling System With Genetic Algorithm in Website-Based Smk Negeri 1 Sine,” J. Tek. Inform., vol. 4, no. 4, pp. 797–806, 2023, doi: 10.52436/1.jutif.2023.4.4.784.
Z. Zulkifli, A. T. Wibowo, and G. Septiana, “Pembobotan Fitur Ekstraksi Pada Peringkasan Teks Bahasa Indonesia Menggunakan Algoritma Genetika | Zulkifli | eProceedings of Engineering,” vol. 2, no. 2, pp. 6481–6489, 2015.
R. R. Putra et al., “Peringkasan Teks Otomatis Pada Multi Dokumen Menggunakan Textrank,” J. Ilm. Komput. dan Inform., 2018.
N. Hendrastuty and A. SN, “Text Summarization in Multi Document Using Genetic Algorithm,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 4, p. 327, 2021, doi: 10.22146/ijccs.66026.
D. Lestari, W. W. Winarno, and M. P. Kurniawan, “Model E-Readiness Untuk Pengukuran Kesiapan Pengelolaan Aduan E-Lapor DIY,” Creat. Inf. Technol. J., vol. 7, no. 2, p. 86, 2021, doi: 10.24076/citec.2020v7i2.249.
F. D. Agustyar, A. Aditya, S. Aminah, and A. Tirtana, “Design and Development an e-Lapor Application to Support Public Complaint Services in Tunjungtirto Village,” J. Informatics Telecommun. Eng., vol. 7, no. 1, pp. 164–173, 2023, doi: 10.31289/jite.v7i1.9762.
A. Tendi And K. E. Dewi, “Ilmiah Komputer Dan Relevance Vector Machine Dalam Peringkasan Multidokumen Ilmiah Komputer Dan,” Vol. 6, No. 1, 2017.
A. Kurniawan, “Aplikasi Sistem Ekstraksi Kata Kunci Berbahasa Indonesia Menggunakan Algoritma Textrank Studi Kasus Data Wikipedia Indonesia,” Repository.Uinjkt.Ac.Id, 2021.
W. Hadikristanto and I. Nasai, “Penerapan Algoritma Genetika Dalam Memprediksi Penerima Program Keluarga Harapan Dengan Metode Naïve Bayes,” SIGMA - J. Teknol. Pelita Bangsa 167, vol. 10, no. 1, pp. 167–172, 2019.
L. A. Pangestu, S. H. Suryawan, and A. J. Latipah, “Penerapan Algoritma Genetika Dalam Penjadwalan Mata Pelajaran,” J. Inform., vol. 10, no. 2, pp. 194–205, 2023, doi: 10.31294/inf.v10i2.16701.
L. Syakina, T. Bakhtiar, F. Hanum, and P. T. Supriyo, “Penentuan Rute Distribusi Rastra Menggunakan Algoritma Genetika,” MILANG J. Math. Its Appl., vol. 19, no. 2, pp. 97–115, 2023, doi: 10.29244/milang.19.2.97-115.
L. D. Yulianti, S. Basuki, and Y. Azhar, “Implementasi Algoritma Graf dan Algoritma Genetika pada Peringkasan Single Document,” J. Repos., vol. 2, no. 11, p. 1521, 2020, doi: 10.22219/repositor.v2i11.891.
D. A. Suprayogi and W. F. Mahmudy, “Penerapan Algoritma Genetika Traveling Salesman Problem with Time Window: Studi Kasus Rute Antar Jemput Laundry,” J. Buana Inform., vol. 6, no. 2, pp. 121–130, 2015, doi: 10.24002/jbi.v6i2.407.
M. Kurniawan, “Optimasi Struktur Rangka Batang Menggunakan Metode Algoritma Genetika Dengan Kendala Tegangan Dan Probabilitas Kegagalan,” J. Saintis, vol. 19, no. 1, pp. 15–23, 2019, doi: 10.25299/saintis.2019.vol19(1).3043.
W. F. Mahmudy and M. A. Rahman, “Optimasi Fungsi Multi-Obyektif Berkendala Menggunakan Algoritma Genetika Adaptif Dengan Pengkodean Real,” J. Ilm. KURSOR, vol. 6, no. 1, pp. 19–26, 2011.
S. Ulya, M. A. Soeleman, and F. Budiman, “Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa,” Techno.Com, vol. 20, no. 1, pp. 83–96, 2021, doi: 10.33633/tc.v20i1.4215.
D. Fatmalasari and F. R. Lumbanraja, “Peringkasan Teks Artikel Ilmiah Berbahasa Indonesia dengan Metode Pembobotan Kalimat,” J. Pepadun, vol. 3, no. 3, pp. 314–322, 2022, doi: 10.23960/pepadun.v3i3.127.
Copyright (c) 2024 Fitrah Amalia Rahmadianti
This work is licensed under a Creative Commons Attribution 4.0 International License.