COMBINATION K-MEANS AND LSTM FOR SOCIAL MEDIA BLACK CAMPAIGN DETECTION OF INDONESIA PRESIDENTIAL CANDIDATES 2024
Abstract
Social media has become the main platform for the public and political figures to voice opinions and run political campaigns. Despite its positive impact, social media also has negative impacts, particularly in the spread of Black Campaigns. This phenomenon has become critical, especially about the 2024 elections in Indonesia that target presidential candidates. Black campaigns can trigger conflict and damage the image of presidential candidates in the eyes of the public. Therefore, it is important to detect black campaigns against presidential candidates. This research develops a Black Campaign detection model using the K-means clustering algorithm and the Long Short-Term Memory (LSTM) approach. K-means is implemented to cluster text data on Twitter social media, while LSTM is used to learn word order patterns and detect text. The result is that K-means can effectively prepare the data, and classification using LSTM shows an accuracy of 90.28%. The comparison with Ensemble Learning classification model achieved an accuracy of 94.31%. Evaluation involved accuracy, precision, recall, and F1-score, with the result that Ensemble Learning was slightly superior in the evaluation matrix. However, compared to Ensemble Learning, LSTM has an advantage in understanding word order, which can be achieved by utilizing the advantages of Deep Learning Recurrent Neural Network architecture. Testing on sample data shows the similarity between LSTM and Ensemble Learning models in detecting Black Campaigns on Twitter social media post text data.
Downloads
References
J. Indrawan, R. E. Barzah, and H. Simanihuruk, ‘INSTAGRAM SEBAGAI MEDIA KOMUNIKASI POLITIK BAGI GENERASI MILENIAL’, EKSPRESI DAN PERSEPSI: JURNAL ILMU KOMUNIKASI, vol. 6, no. 1, pp. 170–179, 2023, doi: 10.33822/jep.v6i1.4519.
E. H. Susanto, ‘MEDIA SOSIAL SEBAGAI PENDUKUNG JARINGAN KOMUNIKASI POLITIK’, Jurnal ASPIKOM, vol. 3, no. 3, 2017, doi: 10.24329/aspikom.v3i3.123.
A. A. Munzir, ‘Beragam peran media sosial dalam dunia politik di Indonesia’, JPPUMA: Jurnal Ilmu Pemerintahan dan Sosial Politik UMA (Journal of Governance and Political Social UMA), vol. 7, no. 2, pp. 173–182, 2019, doi: 10.31289/jppuma.v7i2.2691.
L. Syafirullah, A. S. Prabowo, and R. H. Maharrani, ‘THE AHP METHOD IN DETERMINING RI 2024 PRESIDENTIAL CANDIDATES MILENIAL GENERATION CILACAP STATE POLYTECHNIC: METODE AHP DALAM MENENTUKAN BAKAL CALON PRESIDEN RI 2024 GENERASI MILENIAL POLITEKNIK NEGERI CILACAP’, Jurnal Minfo Polgan, vol. 12, no. 2, pp. 819–829, 2023, doi: 10.33395/jmp.v12i1.12498.
H. Sazali, U. A. R. SM, and R. F. Marta, ‘Mapping Hate Speech Relationships Indonesia’s Religion and State in Social Media’, Communicatus: Jurnal Ilmu komunikasi, vol. 6, no. 2, pp. 189–208, 2022, doi: 10.15575/cjik.v6i2.20431.
D. Wiana, ‘Analysis of the use of the hate speech in social media In the case of presidential election in 2019’, Journal of Applied Studies in Language, vol. 3, no. 2, pp. 158–167, 2019, doi: 10.31940/jasl.v3i2.1541.
W. W. Utami and D. Darmaiza, ‘Hate Speech, Agama, Dan Kontestasi Politik Di Indonesia’, Indonesian Journal of Religion and Society, vol. 2, no. 2, pp. 113–128, 2020, doi: 10.36256/ijrs.v2i2.108.
N. F. Octarina and H. Djanggih, ‘Legal Implication of Black Campaigns on The Social Media in The General Election Process’, Jurnal Dinamika Hukum, vol. 19, no. 1, pp. 271–282, 2019, doi: 10.20884/1.jdh.2019.19.1.2115.
H. S. Al-Ash and W. C. Wibowo, ‘Fake news identification characteristics using named entity recognition and phrase detection’, in Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, 2018. doi: 10.1109/ICITEED.2018.8534898.
R. Ali, U. Farooq, U. Arshad, W. Shahzad, and M. O. Beg, ‘Hate speech detection on Twitter using transfer learning’, Computer Speech & Language, vol. 74, p. 101365, 2022, doi: 10.1016/j.csl.2022.101365.
F. E. T. Sirait, ‘Ujaran Kebencian, Hoax dan Perilaku Memilih (Studi Kasus pada Pemilihan Presiden 2019 di Indonesia)’, Jurnal Penelitian Politik, vol. 16, no. 2, 2020, doi: 10.14203/jpp.v16i2.806.
S. Long, X. He, and C. Yao, ‘Scene text detection and recognition: The deep learning era’, International Journal of Computer Vision, vol. 129, pp. 161–184, 2021, doi: 10.1007/s11263-020-01369-0.
R. Nainggolan, R. Perangin-angin, E. Simarmata, and A. F. Tarigan, ‘Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method’, J. Phys.: Conf. Ser., vol. 1361, no. 1, p. 012015, Nov. 2019, doi: 10.1088/1742-6596/1361/1/012015.
J. Cui, Z. Wang, S.-B. Ho, and E. Cambria, ‘Survey on sentiment analysis: evolution of research methods and topics’, Artificial Intelligence Review, pp. 1–42, 2023, doi: 10.1007/s10462-022-10386-z.
Z. Amiri, A. Heidari, N. J. Navimipour, M. Unal, and A. Mousavi, ‘Adventures in data analysis: A systematic review of Deep Learning techniques for pattern recognition in cyber-physical-social systems’, Multimedia Tools and Applications, pp. 1–65, 2023, doi: 10.1007/s11042-023-16382-x.
A. Chatterjee, U. Gupta, M. K. Chinnakotla, R. Srikanth, M. Galley, and P. Agrawal, ‘Understanding Emotions in Text Using Deep Learning and Big Data’, Computers in Human Behavior, vol. 93, pp. 309–317, Apr. 2019, doi: 10.1016/j.chb.2018.12.029.
S. N. Wahyuni, N. N. Khanom, and Y. Astuti, ‘K-Means Algorithm Analysis for Election Cluster Prediction’, JOIV: International Journal on Informatics Visualization, vol. 7, no. 1, pp. 1–6, 2023, doi: 10.30630/joiv.7.1.1107.
A. Muhariya, I. Riadi, and Y. Prayudi, ‘Cyberbullying Analysis on Instagram Using K-Means Clustering’, JUITA : Jurnal Informatika, vol. 10, no. 2, p. 261, Nov. 2022, doi: 10.30595/juita.v10i2.14490.
A. Bisht, A. Singh, H. S. Bhadauria, J. Virmani, and Kriti, ‘Detection of Hate Speech and Offensive Language in Twitter Data Using LSTM Model’, in Recent Trends in Image and Signal Processing in Computer Vision, vol. 1124, S. Jain and S. Paul, Eds., in Advances in Intelligent Systems and Computing, vol. 1124. , Singapore: Springer Singapore, 2020, pp. 243–264. doi: 10.1007/978-981-15-2740-1_17.
C. Chang and M. Masterson, ‘Using Word Order in Political Text Classification with Long Short-term Memory Models’, Political Analysis, vol. 28, no. 3, pp. 395–411, Jul. 2020, doi: 10.1017/pan.2019.46.
I. Kurniawan and A. Susanto, ‘Implementasi Metode K-Means dan Naà ve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019’, Jurnal Eksplora Informatika, vol. 9, no. 1, pp. 1–10, 2019, doi: 10.30864/eksplora.v9i1.237.
Y. Saini, V. Bachchas, Y. Kumar, and S. Kumar, ‘Abusive Text Examination Using Latent Dirichlet Allocation, Self Organizing Maps and K Means Clustering’, in Proceedings of the International Conference on Intelligent Computing and Control Systems, ICICCS 2020, 2020. doi: 10.1109/ICICCS48265.2020.9121090.
M. Chiny, M. Chihab, O. Bencharef, and Y. Chihab, ‘Lstm, vader and tf-idf based hybrid sentiment analysis model’, International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, 2021, doi: 10.14569/IJACSA.2021.0120730.
G. A. M. K. Jaluwana, G. M. A. Sasmita, and I. M. A. D. Suarjaya, ‘Analysis of Public Sentiment Towards Goverment Efforts to Break the Chain of Covid-19 Transmission in Indonesia Using CNN and Bidirectional LSTM’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 511–520, 2022, doi: 10.29207/resti.v6i4.4055.
S. Saadah, K. M. Auditama, A. A. Fattahila, F. I. Amorokhman, A. Aditsania, and A. A. Rohmawati, ‘Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, 2022.
P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, ‘Sentiment analysis using Word2vec and long short-term memory (LSTM) for Indonesian hotel reviews’, Procedia Computer Science, vol. 179, pp. 728–735, 2021, doi: 10.1016/j.procs.2021.01.061.
S. Santi and H. Februariyanti, ‘IMPLEMENTATION OF CLUSTERING ON TWEET UPLOADING SIDE EFFECTS OF COVID-19 POST VACCINATION USING K-MEANS ALGORITHM’, Jurnal Teknik Informatika (Jutif), vol. 4, no. 4, Art. no. 4, Aug. 2023, doi: 10.52436/1.jutif.2023.4.4.704.
A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, ‘ASA: A framework for Arabic sentiment analysis’, Journal of Information Science, vol. 46, no. 4, pp. 544–559, 2020, doi: 10.1177/0165551519849516.
M. I. Alfarizi, L. Syafaah, and M. Lestandy, ‘Emotional Text Classification Using TF-IDF (Term Frequency-Inverse Document Frequency) And LSTM (Long Short-Term Memory)’, JUITA : Jurnal Informatika, vol. 10, no. 2, p. 225, Nov. 2022, doi: 10.30595/juita.v10i2.13262.
T. A. B. Sembiring and M. S. Hasibuan, ‘TEXT CLUSTERING IN KARO LANGUAGE USING TF-IDF WEIGHTING AND K-MEANS CLUSTERING’, Jurnal Teknik Informatika (Jutif), vol. 4, no. 5, Art. no. 5, Nov. 2023, doi: 10.52436/1.jutif.2023.4.5.1462.
S. Akuma, T. Lubem, and I. T. Adom, ‘Comparing Bag of Words and TF-IDF with different models for hate speech detection from live tweets’, International Journal of Information Technology, vol. 14, no. 7, pp. 3629–3635, Dec. 2022, doi: 10.1007/s41870-022-01096-4.
A. Gazizullina and M. Mazzara, ‘Prediction of twitter message deletion’, presented at the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), IEEE, 2019, pp. 117–122. doi: 10.1109/DeSE.2019.00031.
W. Afandi, S. N. Saputro, A. M. Kusumaningrum, H. Adriansyah, M. H. Kafabi, and S. Sudianto, ‘Klasifikasi Judul Berita Clickbait menggunakan RNN-LSTM’, Jurnal Informatika: Jurnal Pengembangan IT, vol. 7, no. 2, Art. no. 2, May 2022, doi: 10.30591/jpit.v7i2.3401.
S. K. Dasari, S. Gorla, and P. R. PVGD, ‘A stacking ensemble approach for identification of informative tweets on twitter data’, International Journal of Information Technology, pp. 1–12, 2023, doi: 10.1007/s41870-023-01316-5.
S. A. Kokatnoor and B. Krishnan, ‘Twitter hate speech detection using stacked weighted ensemble (SWE) model’, presented at the 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), IEEE, 2020, pp. 87–92. doi: 10.1109/ICRCICN50933.2020.9296199.
Duhok Polytechnic University, A. A. Salih, A. M. Abdulazeez, and Duhok Polytechnic University, ‘Evaluation of Classification Algorithms for Intrusion Detection System: A Review’, JSCDM, vol. 02, no. 01, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.004.
H. Zhao, S. Sun, and B. Jin, ‘Sequential fault diagnosis based on LSTM neural network’, Ieee Access, vol. 6, pp. 12929–12939, 2018, doi: 10.1109/ACCESS.2018.2794765.
M. Al Razib, D. Javeed, M. T. Khan, R. Alkanhel, and M. S. A. Muthanna, ‘Cyber threats detection in smart environments using SDN-enabled DNN-LSTM hybrid framework’, IEEE Access, vol. 10, pp. 53015–53026, 2022, doi: 10.1109/ACCESS.2022.3172304.
R. M. AlZoman and M. J. F. Alenazi, ‘A Comparative Study of Traffic Classification Techniques for Smart City Networks’, Sensors, vol. 21, no. 14, p. 4677, Jul. 2021, doi: 10.3390/s21144677..
Copyright (c) 2024 Wisnu Priambodo, Eri Zuliarso
This work is licensed under a Creative Commons Attribution 4.0 International License.