DROUGHT PREDICTION USING LSTM MODEL WITH STANDARDIZED PRECIPITATION INDEX ON THE NORTH COAST OF CENTRAL JAVA
Abstract
Fluctuating weather can trigger hydrometeorological disasters, especially affecting farmers and fishermen on the north coast of Central Java. Weather predictions including drought are very important to anticipate drought disasters. Deep learning-based prediction models such as Long Short Term Memory (LSTM) are used in an effort to reduce the impact of drought. The purpose of this study is to prove the level of accuracy of the LSTM model and determine the drought index with the Standardized Precipitation Index (SPI). The LSTM model is used to predict drought based on the SPI, while the SPI acts as a drought index that considers precipitation (rainfall) for a period of 1, 3, and 6 months. Predictions use rainfall data obtained from online data from the Central Java BMKG UPT Indonesia for the period 2010-2023 in the Tegal City and Semarang City station areas. The results of data treatment with LSTM can effectively analyze and capture complex patterns in meteorological data to predict drought events accurately. The effectiveness of the model is shown by the relatively small MAE and RMSE results, namely MAE 0.163 - 0.352 and RMSE 0.247-0.515. The best prediction result is the 3-month SPI in the Semarang area with MAE 0.163 and RMSE 0.274. While the prediction result with the largest error is the 1-month SPI in the Tegal area. Drought modeling using LSTM has been successfully implemented for the northern coast of Central Java using the Streamlit Framework and can process and visualize the drought prediction system well.
Downloads
References
D. Auliyani and N. Wahyuningrum, “Rainfall variability based on the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) in Lesti watershed, Java Island, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 874, no. 1, 2021, doi: 10.1088/1755-1315/874/1/012003.
M. I. Supriyatna, A. A. N. S. D. Negara, and N. F. Margini, “Prediksi dan Pemetaan Kekeringan Menggunakan Metode Thomas Fiering dan Standartdized Precipitation Indexs (SPI) di Kabupaten Tuban,” J. Apl. Tek. Sipil, vol. 21, no. 3, p. 229, 2023, doi: 10.12962/j2579-891x.v21i3.17239.
N. A. Prakoso Indaryono, “Analisa Perbandingan Algoritma Random Forest Dan Naïve Bayes Untuk Klasifikasi Curah Hujan Berdasarkan Iklim Di Indonesia,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 1, pp. 158–167, 2024, doi: 10.29100/jipi.v9i1.4421.
S. Koesuma, D. A. Kusuma, and I. W. Harmoko, “Mitigation strategic of drought in central Java Indonesia during Covid-19 pandemic,” J. Phys. Conf. Ser., vol. 1825, no. 1, 2021, doi: 10.1088/1742-6596/1825/1/012024.
G. Prayitno, G. N. Kaunang, and A. Amiruddin Natsir, “Mapping Rainfall [Isohyet] in Areas With a Shortage of Rain Stations Using Manual Station Technique and Prectotcorr Merra-2 Data Analysis,” J. Tek. Inform., vol. 4, no. 4, pp. 819–830, 2023, doi: 10.52436/1.jutif.2023.4.4.943.
D. G. C. Kirono, N. J. Tapper, and J. L. McBride, “Documenting indonesian rainfall in the 1997/1998 EL NiÑo event,” Phys. Geogr., vol. 20, no. 5, pp. 422–435, 1999, doi: 10.1080/02723646.1999.10642687.
W. Shah, J. Chen, I. Ullah, M. H. Shah, and I. Ullah, “Application of RNN-LSTM in Predicting Drought Patterns in Pakistan: A Pathway to Sustainable Water Resource Management,” Water (Switzerland), vol. 16, no. 11, pp. 1–19, 2024, doi: 10.3390/w16111492.
O. M. Baez-Villanueva et al., “On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes,” Hydrol. Earth Syst. Sci., vol. 28, no. 6, pp. 1415–1439, 2024, doi: 10.5194/hess-28-1415-2024.
D. Auliyani, N. Wahyuningrum, A. Budi Supangat, and T. Mutiara Basuki, “Prediction of drought vulnerability and its mitigation measures in the Northern Coast of Java, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1016, no. 1, 2022, doi: 10.1088/1755-1315/1016/1/012003.
G. G. Haile, Q. Tang, W. Li, X. Liu, and X. Zhang, “Drought: Progress in broadening its understanding,” Wiley Interdiscip. Rev. Water, vol. 7, no. 2, 2020, doi: 10.1002/WAT2.1407.
Suroso, D. Nadhilah, Ardiansyah, and E. Aldrian, “Drought detection in java island based on standardized precipitation and evapotranspiration index (SPEI),” J. Water Clim. Chang., vol. 12, no. 6, pp. 2734–2752, 2021, doi: 10.2166/wcc.2021.022.
Renggo Mike Al’Aziz; Muhammad Rifai, “Rancang Bangun Purwa Rupa Sistem Peringatan Dini Curah Hujan Tinggi Dan Banjir Berbasis Aplikasi Blynk 2.0,” J. Teknol., vol. 2, no. 1, pp. 19–25, 2013, [Online]. Available: www.jurnalteknologi.utm.my
H. N. Irmanda, Ermatita, M. K. Awang, and M. Adrezo, “Enhancing Weather Prediction Models through the Application of Random Forest Method and Chi-Square Feature Selection,” Int. J. Informatics Vis., vol. 8, no. 3–2, pp. 1506–1514, 2024, doi: 10.62527/joiv.8.3.2356.
S. Siswanto et al., “Satellite-based meteorological drought indicator to support food security in Java Island.” PLOS ONE, pp. 1–20, 2021.
M. Taufik, B. I. Setiawan, and H. A. J. Van Lanen, “Increased fire hazard in human-modified wetlands in Southeast Asia,” Ambio, vol. 48, no. 4, pp. 363–373, 2019, doi: 10.1007/s13280-018-1082-3.
C. S. Alfredo and D. Adytia, “Time Series Forecasting of Significant Wave Height using GRU, CNN-GRU, and LSTM,” Resti, vol. 6, no. 5, pp. 776–781, 2022.
F. Rasyid and D. A. Adytia, “Time Series Temperature Forecasting by using ConvLSTM Approach, Case Study in Jakarta,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 563–569, 2022, doi: 10.29207/resti.v6i4.4162.
Namora and Jan Everhard Riwurohi, “Prediction of Water Levels on Peatland using Deep Learning,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 234–239, 2022, doi: 10.29207/resti.v6i2.3919.
E. D. Taylan, “An Approach for Future Droughts in Northwest Türkiye: SPI and LSTM Methods,” Sustainability, vol. 16, no. 16, p. 6905, 2024, doi: 10.3390/su16166905.
T. McKee, N. Doesken, J. K.-P. of the 8th, and U. 1993, “The relationship of drought frequency and duration to time scales Drought in Africa,” Climate.Colostate.Edu, no. January, pp. 17–22, 1993, [Online]. Available: https://climate.colostate.edu/pdfs/relationshipofdroughtfrequency.pdf
N. A. A. B. S. Bahari et al., “Predicting Sea Level Rise Using Artificial Intelligence: A Review,” Arch. Comput. Methods Eng., vol. 30, no. 7, pp. 4045–4062, 2023, doi: 10.1007/s11831-023-09934-9.
S. S. Baek, J. Pyo, and J. A. Chun, “Prediction of water level and water quality using a cnn-lstm combined deep learning approach,” Water (Switzerland), vol. 12, no. 12, 2020, doi: 10.3390/w12123399.
R. Rezaiy and A. Shabri, “Improving Drought Prediction Accuracy: A Hybrid EEMD and Support Vector Machine Approach with Standardized Precipitation Index,” Water Resour. Manag., 2024, doi: 10.1007/s11269-024-03912-x.
D. J. Mehta and S. M. Yadav, “Meteorological drought analysis in Pali District of Rajasthan State using standard precipitation index,” Int. J. Hydrol. Sci. Technol., vol. 15, no. 1, pp. 1–10, 2023, doi: 10.1504/IJHST.2021.10037751.
WMO-No.1090, Standardized Precipitation Index User Guide, vol., no. 2012.
J. M. Nápoles-Duarte, A. Biswas, M. I. Parker, J. P. Palomares-Baez, M. A. Chávez-Rojo, and L. M. Rodríguez-Valdez, “Stmol: A component for building interactive molecular visualizations within streamlit web-applications,” Front. Mol. Biosci., vol. 9, no. September, pp. 1–10, 2022, doi: 10.3389/fmolb.2022.990846.
Copyright (c) 2024 Aji Supriyanto, Eri Zuliarso, Eko Taufiq Suharmanto, Hana Amalina, Fitri Damaryanti

This work is licensed under a Creative Commons Attribution 4.0 International License.