OPTIMIZATION OF DISEASE PREDICTION ACCURACY THROUGH ARTIFICIAL NEURAL NETWORK (ANN) ALGORITHMS IN DIAGNESE APPLICATION
Abstract
This research aims to enhance the accuracy and speed of diagnoses in the Diagnese application by implementing the ANN algorithm for disease prediction. The dataset used for experimentation was featuring binary data types, containing 131 symptoms used to predict 41 types of diseases. The Diagnese application assists patients in identifying diseases and finding suitable specialist doctors based on reported symptoms. To achieve this goal, researchers explored various machine learning algorithms, such as decision trees, SVM, Random Forest, Logistic Regression, and ANN. Through comprehensive analysis, the ANN algorithm outperforms other algorithms and showcases the best performance. The research results demonstrate that integrating this application can significantly improve diagnostic accuracy and speed, thereby potentially reducing treatment delays and enhancing patient health outcomes. The neural network model displayed exceptional accuracy across training, validation, and testing datasets, scoring 97%, 99%, and 95%, respectively. Overall, this study showcases the potential of implementing the ANN algorithm within Diagnese applications to elevate the accuracy and efficiency of disease diagnosis. The application of this model is expected to augment the efficiency and precision of the medical diagnosis process, enabling doctors to make more accurate decisions and provide more effective patient care.
Downloads
References
D. Manongga, U. Rahardja, I. Sembiring, N. Lutfiani, and A. B. Yadila, “Dampak Kecerdasan Buatan Bagi Pendidikan,” ADI Bisnis Digital Interdisiplin Jurnal, vol. 3, no. 2, pp. 41–55, 2022, doi: 10.34306/abdi.v3i2.792.
Y. A. Hasma and W. Silfianti, “Implementasi Deep Learning Menggunakan Framework Tensorflow Dengan Metode Faster Regional Convolutional Neural Network Untuk Pendeteksian Jerawat,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 23, no. 2, pp. 89–102, 2018, doi: 10.35760/tr.2018.v23i2.2459.
S. Wahyuni and M. Sulaeman, “Penerapan Algoritma Deep Learning Untuk Sistem Absensi Kehadiran Deteksi Wajah Di PT Karya Komponen Presisi,” Jurnal Informatika SIMANTIK, vol. 7, no. 1, pp. 5–6, 2022.
World Health Organization (WHO), “The top 10 causes of death.” 2020.
R. Rachman, “Sistem Pakar Deteksi Penyakit Refraksi Mata Dengan Metode Teorema Bayes Berbasis Web,” Jurnal Informatika, vol. 7, no. 1, pp. 68–76, 2020, doi: 10.31311/ji.v7i1.7267.
A. NurJumala, N. A. Prasetyo, and H. W. Utomo, “Sistem Pakar Diagnosis Penyakit Rhinitis Menggunakan Metode Forward Chaining Berbasis Web,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, p. 69, 2022, doi: 10.30865/jurikom.v9i1.3815.
R. Deshmukh, P. Gourkhede, and S. Rangari, “Heart Disease Prediction Using Artificial Neural Network,” Ijarcce, vol. 8, no. 1, pp. 85–89, 2019, doi: 10.17148/ijarcce.2019.8119.
A. Faisal and A. Subekti, “Deep Neural Network untuk Prediksi Stroke,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 7, no. 3, pp. 443–449, 2021.
S. Y. Prasetyo, “Prediksi Gagal Jantung Menggunakan Artificial Neural Network,” Jurnal SAINTEKOM, vol. 13, no. 1, pp. 79–88, Mar. 2023, doi: 10.33020/saintekom.v13i1.379.
Neelima, “DISEASE PREDICTION USING MACHINE LEARNING WITH GUI | Kaggle.” 2019.
F. Dharma Adhinata, D. Putra Rakhmadani, M. Wibowo, and A. Jayadi, “A Deep Learning Using DenseNet201,” vol. 9, no. 1, pp. 115–121, 2021.
R. O. Ogundokun, P. O. Sadiku, S. Misra, O. E. Ogundokun, J. B. Awotunde, and V. Jaglan, “Diagnosis of Long Sightedness Using Neural Network and Decision Tree Algorithms,” Journal of Physics: Conference Series, vol. 1767, no. 1, 2021, doi: 10.1088/1742-6596/1767/1/012021.
D. A. Otchere, T. O. Arbi Ganat, R. Gholami, and S. Ridha, “Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models,” Journal of Petroleum Science and Engineering, vol. 200, no. August 2020, p. 108182, 2021, doi: 10.1016/j.petrol.2020.108182.
T. Ciu and R. S. Oetama, “Logistic Regression Prediction Model for Cardiovascular Disease,” IJNMT, vol. VII, no. 1, p. 33, Jun. 2020.
N. Wuryani, S. Agustiani, I. Komputer, and N. Mandiri, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” Jurnal Teknik Komputer AMIK BSI, vol. 7, no. 2, 2021, doi: 10.31294/jtk.v4i2.
F. Putra Utama, T. Mardiansyah, R. Faurina, and A. Vatresia, “Scientific Articles Recommendation System Based On User’s Relatedness Using Item-Based Collaborative Filtering Method,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 3, pp. 467–475, Jun. 2023, doi: 10.52436/1.jutif.2023.4.3.702.
Copyright (c) 2024 Icha Dwi Aprilia Herani, M. Jumli Gazali, Ruvita Faurina
This work is licensed under a Creative Commons Attribution 4.0 International License.