DIGITAL IMAGE CLASSIFICATION OF HERBAL LEAVES USING KNN AND CNN WITH GLCM FEATURES
Abstract
Geographical position and having a tropical climate make Indonesia known for its abundant biodiversity, one of which is herbal leaves. Indonesia has more than 2039 species that fall into the category of herbal medicinal plants. Herbal leaves are plants that are used as an alternative to natural disease healing. The large number of herbal leaf plants makes it difficult for people to distinguish between herbal plants and non-herbal plants, except when herbal leaf plants bear fruit or bloom. With advances in technology, many studies have been conducted to identify types of herbal plants, one of which is to identify the characteristics of the leaves. In this study, image recognition of herbal leaves was carried out using the K-Nearest Neighbor and Convolutional Neural Network methods with feature extraction of the Gray Level Co-occurance Matrix. By using these 2 methods, the data collected in this study were 480 leaf images which were then divided into 80% testing data and 20% training data. The data used are in the form of Sauropus androgynus and Moringa leaves. Based on the test results, the Convolutional Neural Network method which is suggested in the herbal leaf image classification which has an accuracy value of 96%..
Downloads
References
I. P. Arisanti and Y. Yamasari, “Mengenali Jenis Tanaman Obat Berbasis Pola Citra Daun dengan Algoritma K-Nearest Neighbors,” J. Informatics Comput. Sci., vol. 3, no. 02, pp. 95–103, 2021, doi: 10.26740/jinacs.v3n02.p95-103.
S. A. Rosiva Srg, M. Zarlis, and W. Wanayumini, “Identifikasi Citra Daun dengan GLCM (Gray Level Co-Occurence) dan K-NN (K-Nearest Neighbor),” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 477–488, 2022, doi: 10.30812/matrik.v21i2.1572.
F. S. Ni’mah, T. Sutojo, and D. R. I. M. Setiadi, “Identification of Herbal Medicinal Plants Based on Leaf Image Using Gray Level Co-occurence Matrix and K-Nearest Neighbor Algorithms,” J. Teknol. dan Sist. Komput., vol. 6, no. 2, pp. 51–56, 2018, doi: 10.14710/jtsiskom.6.2.2018.51-56.
Haryono, Khairul Anam, and Azmi Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 278–286, 2020, doi: 10.22146/.v9i3.302.
A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.
M. A. Hasan, Y. Riyanto, and D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, pp. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.
C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 1–6, 2019, doi: 10.30591/jpit.v4i1.1267.
Q. Said, I. Ernawati, and M. M. Santoni, “Identifikasi Tuberkulosis Paru Berdasarkan Foto Sinar-X Thorax Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Inform. J. Ilmu Komput., vol. 17, no. 1, 2021, doi: 10.52958/iftk.v17i1.2222.
M. Yunianto et al., “Klasifikasi Kanker Paru Paru menggunakan Naïve Bayes dengan Variasi Filter dan Ekstraksi Ciri GLCM,” Indones. J. Appl. Phys., vol. 11, no. 2, p. 256, 2021, doi: 10.13057/ijap.v11i2.53213.
M. F. Naufal et al., “Klasifikasi Citra Game Batu Kertas Gunting Menggunakan Convolutional Neural Network,” Techno.Com, vol. 20, no. 1, pp. 166–174, 2021, doi: 10.33633/tc.v20i1.4273.
L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1129, 2020, doi: 10.25126/jtiik.2020722608.
F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,” J. Informatics Comput. Sci., vol. 1, no. 02, pp. 104–108, 2020, doi: 10.26740/jinacs.v1n02.p104-108.
Luqman Hakim, Z. Sari, and H. Handhajani, “Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 379–385, 2021, doi: 10.29207/resti.v5i2.3001.
D. Iswantoro and D. Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 2, p. 900, 2022, doi: 10.33087/jiubj.v22i2.2065.
T. Winanda, Y. Yunus, and H. Hendrick, “Klasifikasi Kualitas Mutu Daun Gambir Ladang Rakyat Menggunakan Metode Convolutional Neural Network,” J. Sistim Inf. dan Teknol., vol. 3, no. 3, pp. 102–107, 2021, doi: 10.37034/jsisfotek.v3i3.156.
O. R. Indriani and C. A. Sari, “Tomatoes Classification Using K-NN Based on GLCM and HSV Color Space,” Int. Conf. Innov. Creat. Inf. Technol. Comput. Intell. IoT, ICITech, no. November, 2017, doi: 10.1109/INNOCIT.2017.8319133.
Y. Park and J. Guldmann, “Measuring Continuous Landscape Patterns with Gray-Level Co-Occurrence Matrix ( GLCM ) Indices : An Alternative to Patch Metrics ?,” Ecol. Indic., no. February, 2020, doi: 10.1016/j.ecolind.2019.105802.
C. Journal, D. B. Wahyudi, and F. W. Wibowo, “Pola Tekstur Permukaan untuk Klasifikasi Mutu Ubin Teraso Menggunakan GLCM dan KNN,” Creat. Inf. Technol. J., vol. 5, no. 1, pp. 49–57, 2018.
I. A. A. S. Pratiwi and A. W. Wijayanto, “Klasifikasi Indeks Pembangunan Manusia dengan Metode K-Nearest Neighbor dan Support Vector Machine di Pulau Jawa,” J. Ilmu Komput., vol. 15, no. 1, pp. 8–21, 2019, [Online]. Available: https://ojs.unud.ac.id/index.php/jik/article/download/68565/44248.
D. A. N. Pca, “Klasifikasi tingkat kematangan buah kopi berdasarkan deteksi warna menggunakan metode knn dan pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021.
N. Rachmat and B. J. Saputra, “Klasifikasi Video Olahraga Berdasarkan Citra Berbasis Konten Menggunakan Segmentasi Superpixel Sport Video Classification Based on Content Image with Superpixel Segmentation,” Komputika J. Sist. Komput., vol. 11, no. 28, 2022, doi: 10.34010/komputika.v11i1.4542.
S. Juliansyah and A. D. Laksito, “Klasifikasi Citra Buah Pir Menggunakan Convolutional Neural Networks,” InComTech J. Telekomun. dan Komput., vol. 11, no. 1, pp. 65–72, 2021.
H. Saleh et al., “K-Nearest Neighbor Berbasis Seleksi Atribut Chi Square,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 14, no. 1, pp. 1–10, 2023.
R. Magdalena, S. Saidah, I. Da, Y. N. Fuadah, N. Herman, and N. Ibrahim, “Convolutional Neural Network for Anemia Detection Based on Conjunctiva Palpebral Images,” J. Tek. Inform., vol. 3, no. 2, pp. 349–354, 2022.
Copyright (c) 2024 Dinna Zahirah, Purnawansyah Purnawansyah, Nia Kurniati, Herdianti Darwis
This work is licensed under a Creative Commons Attribution 4.0 International License.