Comparative Analysis of CNN, SVM, Decision Tree, Random Forest, and KNN for Maize Leaf Disease Detection Using Color and Texture Feature Extraction
DOI:
https://doi.org/10.52436/1.jutif.2025.6.5.5128Keywords:
CNN, Corn Leaf Diseases, Decision Tree, KNN, Random Forest, SVMAbstract
Corn (Zea mays L.) is an important agricultural commodity in Indonesia, serving as the second staple food after rice and playing a crucial role in supporting national food security. However, corn production is frequently threatened by sudden outbreaks of pests and diseases, making accurate early detection essential to maintaining yield stability. This study aims to detect maize leaf diseases using five classification algorithms: Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Random Forest, and Convolutional Neural Network (CNN). These algorithms were tested using a combination of texture and color features, including Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), Hue-Saturation-Value (HSV), and L*a*b*. The dataset used consists of 2,048 maize leaf images classified into four categories: Blight, Common Rust, Gray Leaf Spot, and Healthy, with 512 images per class. Each class was divided into training and testing sets to train and evaluate the classification models.
The results show that CNN achieved the highest accuracy of 93.93% when using a complete combination of color and texture features. Meanwhile, SVM also demonstrated high performance, achieving the same accuracy (93.93%) using only the combination of color features (HSV and Lab*). Random Forest and Decision Tree performed best when using color features alone, with accuracies of 89.81% and 87.14%, respectively. These findings indicate that color features have a dominant influence on classification accuracy, and that combining color and texture features can significantly enhance model performance, particularly in CNN architectures. This study contributes to the development of early disease detection systems in precision agriculture.
Downloads
References
Fitrawati S, M. Ilsan, and R. Rasyid, “Analisis Ekonomi Dan Prospek Pengembangan UsahaTani Jagung (Zea mays L.) Di Kabupaten Barru (Studi Kasus di Desa Lalabata, Kecamatan Tanate Rilau),” Wiratani: Jurnal Ilmiah Agribisnis, vol. 6, no. 2, pp. 137–146, 2023.
D. Iswantoro and D. Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 22, no. 2, pp. 900–905, Jul. 2022, doi: 10.33087/jiubj.v22i2.2065.
B. Widianto, E. Utami, and D. Ariatmanto, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” Techno.COM, vol. 22, no. 3, pp. 599–608, 2023, [Online]. Available: www.kaggle.com.
K. Prabavathy, M. Bharath, K. Sanjayratnam, N. S. S. R. Reddy and M. S. Reddy, "Plant Leaf Disease Detection using Machine Learning," 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2023, pp. 378-382, doi: 10.1109/ICAAIC56838.2023.10140367.
I. Permata Sari, B. Hidayat, and R. Dwi Atmaja, “Perancangan dan Simulasi Deteksi Penyakit Tanaman Jagung Berbasis Pengolahan Citra Digital Menggunakan Metode Color Moments dan GLCM,” Seminar Nasional Inovasi dan Aplikasi Teknologi DI Inndustri (SENIATI), pp. 215–220, 2016.
Mohamad Ilyas Abas, Syafruddin Syarif, Ingrid Nurtanior, and Zulkifli Tahir, “Detection of corn plant diseases using convolutional neural network: A review,” AIP Conf. Proceeding, vol. 2952, Jul. 2024, doi: https://doi.org/10.1063/5.0211960. [7] N. Sachin Patil and E. Kannan, “An efficient corn leaf disease prediction using Adaptive Color Edge Segmentation with Resnext101 model,” J. Saudi Soc. Agric. Sci., p. S1658077X24000845, Sep. 2024, doi: 10.1016/j.jssas.2024.09.002.
R. K. Singh, A. Tiwari, dan R. K. Gupta, “Deep transfer modeling for classification of Maize Plant Leaf Disease,” Multimed. Tools Appl., vol. 81, no. 5, hlm. 6051–6067, Feb 2022, doi: 10.1007/s11042-021-11763-6.
M. Masood dkk., “MaizeNet: A Deep Learning Approach for Effective Recognition of Maize Plant Leaf Diseases,” IEEE Access, vol. 11, hlm. 52862–52876, 2023, doi: 10.1109/access.2023.3280260.
R. Kale dan S. Shitole, “Analysis of Crop disease detection with SVM, KNN and Random forest classification,” Inf. Technol. Ind., vol. 9, no. 1, hlm. 364–372, Mar 2021, doi: 10.17762/itii.v9i1.140.
Y. Resti, C. Irsan, M. Amini, I. Yani, R. Passarella, dan D. A. Zayanti, “Performance Improvement of Decision Tree Model using Fuzzy Membership Function for Classification of Corn Plant Diseases and Pests,” Sci. Technol. Indones., vol. 7, no. 3, hlm. 284–290, Jul 2022.
Suryadi, M. Murhaban, dan R. Suhendra, “Comparative Analysis of the Performance of the Decision Tree and K-Nearest Neighbors Methods in Classifying Coffee Leaf Diseases,” Conf. Ser., vol. 4, no. 1, hlm. 165–171, Des 2023, doi: 10.34306/conferenceseries.v4i1.649.
E. Singh, R. Chawla, R. Kaur and V. Kukreja, "Maize Disease Multi-Classification: Leveraging CNN and Random Forest for Accurate Diagnosis," 2024 International Conference on Automation and Computation (AUTOCOM), Dehradun, India, 2024, pp. 75-79, doi: 10.1109/AUTOCOM60220.2024.10486145.
J. O. Olayiwola dan J. A. Adejoju, “Maize (Corn) Leaf Disease Detection System Using Convolutional Neural Network (CNN),” dalam Computational Science and Its Applications – ICCSA 2023, O. Gervasi, B. Murgante, D. Taniar, B. O. Apduhan, A. C. Braga, C. Garau, dan A. Stratigea, Ed., Cham: Springer Nature Switzerland, 2023, hlm. 309–321.
Universitas Singaperbangsa Karawang, I. Supiyani, dan N. Arifin, “Identifikasi Nomor Rumah Pada Citra Digital Menggunakan Neural Network,” Method. J. Tek. Inform. Dan Sist. Inf., vol. 8, no. 1, hlm. 18–21, Mar 2022, doi: 10.46880/mtk.v8i1.921.
Q. N. Azizah, “Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network AlexNet,” Sudo J. Tek. Inform., vol. 2, no. 1, hlm. 28–33, Feb 2023, doi: 10.56211/sudo.v2i1.227.
B. Widianto, E. Utami, dan D. Ariatmanto, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 3, hlm. 599–608, Agu 2023, doi: 10.33633/tc.v22i3.8425.
M. P. Juniarta, M. H. H. Arrahman, dan N. Sulistianingsih, “Implementasi Gray Level Co-Occurrence Matrix (GLCM) Untuk Mendeteksi Penyakit Daun Pada Tanaman Holtikultura,” Technol. Health Agric. Nexus Conf. Ser., vol. 1, no. 1, hlm. 29–40, Mar 2025.
E. H. Rachmawanto dan H. P. Hadi, “Optimasi Ekstraksi Fitur Pada KNN dalam Klasifikasi Penyakit Daun Jagung,” Dinamik, vol. 26, no. 2, hlm. 58–67, Sep 2021, doi: 10.35315/dinamik.v26i2.8673.
M. Nur, B. Rahman, A. Patombongi, dan F. Kahar, “Mendeteksi dan Mengklasifikasi Penyakit Daun pada Tanaman Jagung Menggunakan Jaringan Saraf Konvolusional,” J. Sist. Inf. Dan Tek. Komput., vol. 10, no. 1, hlm. 94–99, 2025, doi: 10.51876/simtek.v10i1.1498. J. C.
Lapendy, A. A. C. Resky, H. Makmur, A. B. Kaswar, D. D. Andayani, dan F. Adiba, “Klasifikasi Rasa Jeruk Siam Berdasarkan Warna Dan Tekstur Berbasis Pengolahan Citra Digital,” JIPI J. Ilm. Penelit. Dan Pembelajaran Inform., vol. 9, no. 2, hlm. 756–767, Mei 2024, doi: 10.29100/jipi.v9i2.5384.
B. K. Hatuwal, A. Shakya, dan B. Joshi, “Plant Leaf Disease Recognition Using Random Forest, KNN, SVM and CNN,” POLIBITS J., vol. 62, hlm. 13–19, 2020, doi: https://doi.org/10.17562/PB-62-2.
R. Suhendra, I. Juliwardi, dan S. Sanusi, “Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine,” J. Teknol. Inf., vol. 1, no. 1, hlm. 29–35, Mei 2022, doi: 10.35308/.v1i1.5520
B. V. Nikith, N. K. S. Keerthan, M. S. Praneeth, dan Dr. T. Amrita, “Leaf Disease Detection and Classification,” Procedia Comput. Sci., vol. 218, hlm. 291–300, 2023, doi: 10.1016/j.procs.2023.01.011.
B. Charbuty dan A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, hlm. 20–28, Mar 2021, doi: 10.38094/jastt20165.
D. Das, M. Singh, S. S. Mohanty and S. Chakravarty, "Leaf Disease Detection using Support Vector Machine," 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020, pp. 1036-1040, doi: 10.1109/ICCSP48568.2020.9182128.
P. F. Johari, N. Arifin, M. Muzaki, dan M. S. A. Utama, “Corn Leaf Diseases Classification Using CNN with GLCM, HSV, and L*a*b* Features,” J. Tek. Inform. Jutif, vol. 6, no. 2, hlm. 709–722, Apr 2025, doi: 10.52436/1.jutif.2025.6.2.4345.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurhikma Arifin, Chairi Nur Insani

This work is licensed under a Creative Commons Attribution 4.0 International License.





