Corn Leaf Diseases Classification Using CNN with GLCM, HSV, and L*a*b* Features
DOI:
https://doi.org/10.52436/1.jutif.2025.6.2.4345Keywords:
Convolutional Neural Network, Corn Leaf Diseases, GLCM, HSV, L*a*b*Abstract
Corn leaf diseases can damage plants and reduce crop yields, thus affecting the quality and quantity of corn production. This study aims to classify corn leaf diseases using the Convolutional Neural Network (CNN) method with different color features, namely Gray Level Co-Occurrence Matrix (GLCM), HSV, and L*a*b*. The dataset consists of 1,739 corn leaf images, which are divided into four disease classes: Blight, Common Rust, Gray Spot, and Healthy. The data is split into training and testing sets using an 80:20 ratio. Two testing scenarios were conducted: individual feature evaluation and feature combination. The results show that in the first scenario, the L*a*b* feature provides the best accuracy at 91.75%, followed by the HSV feature with an accuracy of 90.29%, and GLCM with an accuracy of 78.40%. In the second scenario, the combination of HSV and L*a*b* features results in the highest accuracy of 92.48%, indicating that combining color and brightness information can improve the model's performance. The combination of GLCM and L*a*b* features results in an accuracy of 91.75%, while the combination of GLCM and HSV results in an accuracy of 90.29%. These findings demonstrate that integrating HSV and L*a*b features enhances CNN performance in corn leaf disease classification, outperforming individual feature- based approaches, thus contributing to more effective AI-based agricultural disease diagnosis.
Downloads
References
A. Sapitri, J. Raharjo, and S. Rizal, “Identifikasi Penyakit Jagung Dengan Menerapkan Metode Gray Level Co- Occurrence Matrix (GLCM) Dan Support Vector Machine (SVM) Melalui Citra Daun,” vol. 8, no. 6, pp. 2969–2971, Desember 2022.
R. Kusumastuti, T. Dwi Putra, and Z. Zulfahmi Yudam, “Klasifikasi Citra Penyakit Daun Jagung Menggunakan Algoritma Cnn Effcientnet,” Multitek Indones., vol. 17, no. 2, pp. 143–153, Aug. 2024, doi: 10.24269/mtkind.v17i2.10085.
Mohamad Ilyas Abas, Syafruddin Syarif, Ingrid Nurtanior, and Zulkifli Tahir, “Detection of corn plant diseases using convolutional neural network: A review,” AIP Conf. Proceeding, vol. 2952, Jul. 2024, doi: https://doi.org/10.1063/5.0211960.
S. Sarah, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Tinjauan Literatur Sistematis (Slr),” SEMASTER Semin. Nas. Teknol. Inf. Ilmu Komput., vol. 2, no. 1, pp. 278– 289, 2023.
H. Yang et al., “YOLO-SDW: A method for detecting infection in corn leaves,” Energy Rep., vol. 12, pp. 6102–6111, Dec. 2024, doi: 10.1016/j.egyr.2024.11.072.
K. Ahadian et al., “Maize disease classification using transfer learning and convolutional neural network with weighted loss,” Heliyon, vol. 10, no. 21, p. e39569, Nov. 2024, doi: 10.1016/j.heliyon.2024.e39569.
N. Sachin Patil and E. Kannan, “An efficient corn leaf disease prediction using Adaptive Color Edge Segmentation with Resnext101 model,” J. Saudi Soc. Agric. Sci., p. S1658077X24000845, Sep. 2024, doi: 10.1016/j.jssas.2024.09.002.
M. M. Malik et al., “A novel deep CNN model with entropy coded sine cosine for corn disease classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 7, p. 102126, Sep. 2024, doi: 10.1016/j.jksuci.2024.102126.
B. Mazumder, M. S. I. Khan, and K. M. Mohi Uddin, “Biorthogonal wavelet based entropy feature extraction for identification of maize leaf diseases,” J. Agric. Food Res., vol. 14, p. 100756, Dec. 2023, doi: 10.1016/j.jafr.2023.100756.
K. A. D. Idress, O. A. A. Gadalla, Y. B. Öztekin, and G. P. Baitu, “Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing,” J. Agric. Sci. Tarim Bilim. Derg., pp. 464–476, Jan. 2024, doi: 10.15832/ankutbd.1288298.
S. Chaudhary and U. kumar, “Identification of rice crop diseases using gray level co-occurrence matrix (GLCM) and Neuro-GA classifier,” Int. J. Syst. Assur. Eng. Manag., vol. 15, no. 10, pp. 4838–4852, Oct. 2024, doi: 10.1007/s13198-024-02486-6.
A. Patel, R. Mishra, and A. Sharma, “Maize Plant Leaf Disease Classification Using Supervised Machine Learning Algorithms,” Fusion Pract. Appl., vol. 13, no. 2, pp. 08–21, 2023, doi: 10.54216/FPA.130201.
S. Reno, M. K. Turna, S. Tasfia, Md. Abir, and A. Aziz, “Utilizing Deep Convolutional Neural Networks for Image-Based Plant Disease Detection,” in Inventive Systems and Control, V. Suma, P. Lorenz, and Z. Baig, Eds., Singapore: Springer Nature Singapore, 2023, pp. 201–216.
N. K. Trivedi, S. Maheshwari, A. Anand, A. Kumar, and V. S. Rathor, “Identify and Classify CORN Leaf Diseases Using a Deep Neural Network Architecture,” in Proceedings of Seventh International Congress on Information and Communication Technology, X.-S. Yang, S. Sherratt,
N. Dey, and A. Joshi, Eds., Singapore: Springer Nature Singapore, 2023, pp. 873–880.
A. Mustopa, H. M. Nawawi, V. Riyanto, M. A. Azis, I. Nawawi and G. Wijaya, "Combination of Feature Extraction Methods for Identification of Diseases in Corn Leaves," 2024 International Conference on Information Technology Research and Innovation (ICITRI), Jakarta, Indonesia, 2024, pp. 192-197, doi: 10.1109/ICITRI62858.2024.10699181.
S. Pancono, N. Indroasyoko and A. I. Setiawan, "Pemantauan dan Deteksi Penyakit Daun Tomat Berbasis IoT dan CNN dengan Aplikasi Android," Indonesian Journal of Computer Science, vol. 13, no. 3, pp. 4692-4709, 2024, DOI:10.33022/ijcs.v13i3.4083
H. Yu et al., “Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning,” IEEE Access, vol. 9, pp. 143824–143835, 2021, doi: 10.1109/ACCESS.2021.3120379.
N. Arifin, J. Rusman, and M. F. Rasyid, “Leaf Disease Detection In Tomato Plants Using Xception Model In Convolutional Neural Network Method,” J. Tek. Inform. JUTIF, vol. 5, no. 2, pp. 571–577, Apr. 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.2.1926.
A. K. Whardana, D. Febriyanto, M. J. Katanka, N. A. Oktavia, and T. Desta, “Klasifikasi Penyakit Daun Anggur dengan Menggunakan Convolutional Neural Network dan Transfer Learning dari VGG16,” J. Sist. Komput. Kecerdasan Buatan, vol. 7, no. 2, pp. 198–202, Feb. 2024, doi: https://doi.org/10.47970/siskom-kb.v7i2.613.
E. H. Rachmawanto and H. P. Hadi, “Optimasi Ekstraksi Fitur Pada Knn Dalam Klasifikasi Penyakit Daun Jagung,” Dinamik, vol. 26, no. 2, pp. 58–67, Sep. 2021, doi: 10.35315/dinamik.v26i2.8673.
C. Nyasulu et al., “A comparative study of Machine Learning-based classification of Tomato fungal diseases: Application of GLCM texture features,” Heliyon, vol. 9, no. 11, p. e21697, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21697.
M. Kabir, F. Unal, T. C. Akinci, A. A. Martinez-Morales, and S. Ekici, “Revealing GLCM Metric Variations across a Plant Disease Dataset: A Comprehensive Examination and Future Prospects for Enhanced Deep Learning Applications,” Electronics, vol. 13, no. 12, p. 2299, Jun. 2024, doi: 10.3390/electronics13122299.
A. Karlekar and A. Seal, “SoyNet: Soybean leaf diseases classification,” Comput. Electron. Agric., vol. 172, p. 105342, May 2020, doi: 10.1016/j.compag.2020.105342.
M. Rijal, A. M. Yani, and A. Rahman, “Deteksi Citra Daun untuk Klasifikasi Penyakit Padi menggunakan Pendekatan Deep Learning dengan Model CNN,” J. Teknol. Terpadu, vol. 10, no. 1, pp. 56–62, Jul. 2024, doi: 10.54914/jtt.v10i1.1224.
Abwabul Jinan and B.Herawan Hayadi, “Klasifikasi Penyakit Tanaman Padi Mengunakan Metode Convolutional Neural Network Melalui Citra Daun (Multilayer Perceptron),” J. Comput. Eng. Sci., vol. 1, no. 2, pp. 37–44, Apr. 2022, doi: https://pusdikra- publishing.com/index.php/jaroe/article/view/772.
N. R. Rajalakshmi et al., “Early Detection of Banana Leaf Disease Using Novel Deep Convolutional Neural Network,” J. Data Sci. Intell. Syst., pp. 1–8, Aug. 2024, doi: 10.47852/bonviewJDSIS42021530.
A. D. A. Firdaus, R. D. Rahmawan, Y. R. Mahendra And H. D. Cahyono, "Sentiment Analysis Classification In Women's E-Commerce Reviews With Machine Learning Approach," Jurnal Teknik Informatika (Jutif), Vol. 5, No. 6, Pp. 1549-1559, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.6.2392.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Putri Fausyah Johari, Nurhikma Arifin, Muzaki Muzaki, Muhammad Surya Alif Utama

This work is licensed under a Creative Commons Attribution 4.0 International License.