Classification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural NetworkClassification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural Network

Authors

  • Nurhikma Arifin Informatics, Engineering Faculty, Universitas Sulawesi Barat, Indonesia
  • Chairi Nur Insani Informatics, Engineering Faculty, Universitas Sulawesi Barat, Indonesia
  • Milasari Informatics, Engineering Faculty, Universitas Sulawesi Barat, Indonesia
  • Juprianus Rusman Informatics, Engineering Faculty, Universitas Kristen Indonesia Toraja, Indonesia
  • Samrius Upa Informatics, Engineering Faculty, Universitas Kristen Indonesia Toraja, Indonesia
  • Muhammad Surya Alif Utama Computer Science and Engineering, Politecnico Milano, Italia

DOI:

https://doi.org/10.52436/1.jutif.2025.6.3.4781

Keywords:

Backpropagation, Classification, HSV, Image Processing, Occupational Safety and Health, PPE Detection

Abstract

Occupational Safety and Health (OSH) is a critical aspect in high-risk work environments, where the consistent use of Personal Protective Equipment (PPE) plays a vital role in preventing workplace accidents. However, non-compliance with PPE regulations remains a significant issue, contributing to a high number of work-related injuries in Indonesia. This study proposes an automated detection and classification system for PPE usage, specifically helmets and vests, using the Backpropagation algorithm in artificial neural networks. A total of 100 images were utilized, equally divided between complete and incomplete PPE usage. The dataset was split into 60% training and 40% testing. Image segmentation was performed using HSV color space conversion and thresholding, followed by RGB color feature extraction. The Backpropagation algorithm was then employed for classification. Experimental results show an average accuracy of 90%, with precision, recall, and F-measure all reaching 0.9. Despite some misclassifications due to color similarity between helmets and head coverings, the model demonstrated robust performance with relatively low computational requirements. This study contributes to the field of computer vision and intelligent safety systems by demonstrating the practical effectiveness of lightweight ANN architectures for PPE detection in real-time industrial scenarios, thereby highlighting the potential of backpropagation as an adaptive and practical alternative to more complex deep learning approaches for real-time PPE detection in occupational safety monitoring systems.

Downloads

Download data is not yet available.

References

V. Aprelia D. N. A. Alves, E. D. A. Barboza and T. F. Vieira, TinyPPE: “Ensuring Workplace Safety Helmet Compliance with Tiny Machine Learning,” 2024 XIV Brazilian Symposium on Computing Systems Engineering (SBESC), Recife, Brazil, 2024, pp. 1-6, doi: 10.1109/SBESC65055.2024.10771910.

M. Ulum, M. Zakariya, A. Fiqhi, and H. Haryanto, “Rancang Sistem Pendeteksi Alat Pelindung Diri (APD) Berbasis Image Prosessing,” Inform. Electr. Electron. Eng. Infotron, vol. 1, no. 1, p. 24, Jun. 2021, doi: 10.33474/infotron.v1i1.11236.

M. Bottlang, G. DiGiacomo, S. Tsai, and S. Madey, “Effect of helmet design on impact performance of industrial safety helmets,” Heliyon, vol. 8, no. 8, p. e09962, Aug. 2022, doi: 10.1016/j.heliyon.2022.e09962.

M.-E. Otgonbold et al., “SHEL5K: An Extended Dataset and Benchmarking for Safety Helmet Detection,” Sensors, vol. 22, no. 6, p. 2315, Mar. 2022, doi: 10.3390/s22062315.

S. Susanti, S. Aulia, and I. D. Irawati, “Deteksi Helm Otomatis Untuk Keselamatan Kerja di Tempat Proyek Berbasis Yolo,” vol. 9, no. 1, pp. 28–32, Feb. 2023.

D. Benyang, L. Xiaochun and Y. Miao, "Safety helmet detection method based on YOLO v4," 2020 16th International Conference on Computational Intelligence and Security (CIS), Guangxi, China, 2020, pp. 155-158, doi: 10.1109/CIS52066.2020.00041.

U. Jayanti et al., “Analisis Penggunaan Alat Pelindung Diri dan Kecelakaan Kerja pada Pekerja Pabrik Kelapa Sawit di PT. Palma Mas Sejati Kabupaten Bengkulu Tengah,” J. Nurs. Public Health, vol. 11, no. 1, pp. 272–278, May 2023, doi: 10.37676/jnph.v11i1.4138.

V. Velusamy Bharathi, S. Prieto, B. García De Soto, and J. Teizer, “Automating Construction Safety Inspections using Robots and Unsupervised Deep Domain Adaptation by Backpropagation,” presented at the 41st International Symposium on Automation and Robotics in Construction, Lille, France, Jun. 2024. doi: 10.22260/ISARC2024/0111.

M. R. Subhi, E. Rachmawati, and G. Kosala, “Safety Helmet Detection on Field Project Worker Using Detection Transformer,” J. Inf. Syst. Res. JOSH, vol. 4, no. 4, pp. 1316–1323, Jul. 2023, doi: 10.47065/josh.v4i4.3852.

K. Patel, V. Patel, V. Prajapati, D. Chauhan, A. Haji and S. Degadwala, "Safety Helmet Detection Using YOLO V8," 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, 2023, pp. 22-26, doi: 10.1109/ICPCSN58827.2023.00012.

H. Wang, “Detection of Personal Protective Equipment (PPE) using an Anchor Free-Convolutional Neural Network,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 2, 2024, doi: 10.14569/IJACSA.2024.0150239.

M. I. B. Ahmed et al., “Personal Protective Equipment Detection: A Deep-Learning-Based Sustainable Approach,” Sustainability, vol. 15, no. 18, p. 13990, Sep. 2023, doi: 10.3390/su151813990.

Z. Wang, Y. Wu, L. Yang, A. Thirunavukarasu, C. Evison, and Y. Zhao, “Fast Personal Protective Equipment Detection for Real Construction Sites Using Deep Learning Approaches,” Sensors, vol. 21, no. 10, p. 3478, May 2021, doi: 10.3390/s21103478.

A. A. Protik, A. H. Rafi and S. Siddique, "Real-time Personal Protective Equipment (PPE) Detection Using YOLOv4 and TensorFlow," 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, Republic of, 2021, pp. 1-6, doi: 10.1109/TENSYMP52854.2021.9550808.

A. Susanto, “Kombinasi Sobel, Canny Dan Otsu Untuk Segmentasi Citra Pengguna Helem Safety Dan Tanpa Helem Safety,” Technol. J. Ilm., vol. 13, no. 2, p. 102, Apr. 2022, doi: 10.31602/tji.v13i2.6493.

Z. Qiu, S. Lv, W. Gao and M. Yu, “The improvement of YOLOv8 for detecting railway workers’ safety helmets and safety vests based on GhostConv,” 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC), Wuhan, China, 2024, pp. 1439-1445, doi: 10.1109/EIECC64539.2024.10929506.

R. M. Iman and R. Rahmadewi, “Detection Of Safety Helmet Usage On Workers Using You Only Look Once Version 8 (YOLOV8),” J. Tek. Elektro, vol. 27, no. 1, pp. 11–18, 16 April, doi: https://doi.org/ 10.24912/tesla.v27i1.33391.

F. Herdyanto, M. Fatchan, and W. Hadikristanto, “Industrial Safety Helmet Detection: Innovative CNN-Based Classification Approach,” Int. J. Integr. Sci. Technol., vol. 2, no. 5, pp. 526–537, Jun. 2024, doi: 10.59890/ijist.v2i5.1925.

T. Bagthaliya, V. Shah, S. Shelke, D. Shukla, and Y. Shukla, “Safety Measure Detection Using Deep Learning,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 10, no. 2, pp. 148–155, Mar. 2024, doi: 10.32628/CSEIT2490216.

M. Çiftçi, M. U. Türkdamar, and C. Öztürk, “Leveraging YOLO Models for Safety Equipment Detection on Construction Sites,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 492–506, May 2024, doi: 10.62411/jcta.10453.

V. R. Oktavia, A. W. S. B. Johan, W. G. Ananta, F. Refiandi, and M. K. Karim, “Detection of Motorcycle Headlights Using YOLOv5 and HSV,” Teknika, vol. 12, no. 3, pp. 189–197, Oct. 2023, doi: 10.34148/teknika.v12i3.682.

J. S. Wibowo, “Deteksi dan Klasifikasi Citra Berdasarkan Warna Kulit Menggunakan HSV,” J. Teknol. Inf. Din., vol. 16, no. 2, pp. 118–123, 2011.

S. H. Hasanah and S. M. Permatasari, “Metode Klasifikasi Jaringan Syaraf Tiruan Backpropagation Pada Mahasiswa Statistika Universitas Terbuka,” Barekeng J. Ilmu Mat. Dan Terap., vol. 14, no. 2, pp. 243–252, Jun. 2020, doi: 10.30598/barekengvol14iss2pp243-252.

F. P. Fantara, D. Syauqy, and G. E. Setyawan, “Implementasi Sistem Klasifikasi Sampah Organik dan Anorganik dengan Metode Jaringan Saraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 11, pp. 5577–5586, Nov. 2018.

Hadi Supriyanto, Sarosa Castrena Abadi, and Aliffa Shalsabilah, “Deteksi Helm Keselamatan Menggunakan Jetson Nano dan YOLOv7,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 1–8, Feb. 2024, doi: 10.52158/jacost.v5i1.637.

Additional Files

Published

2025-06-10

How to Cite

[1]
N. Arifin, C. N. Insani, M. Milasari, J. . Rusman, S. . Upa, and M. S. A. . Utama, “Classification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural NetworkClassification of Helmet and Vest Usage for Occupational Safety Monitoring using Backpropagation Neural Network”, J. Tek. Inform. (JUTIF), vol. 6, no. 3, pp. 1255–1266, Jun. 2025.