ACCREDITATION PREDICTION OF EARLY CHILDHOOD EDUCATION INSTITUTIONS USING MACHINE LEARNING TECHNIQUES
Abstract
Accreditation is an acknowledgement of an educational institution regarding the feasibility of carrying out the educational process. Making predictions can save time for early childhood education institutions in compiling accreditation forms that will be submitted. Prediction in determining accreditation becomes an important lesson for an institution in self-assessing the quality of its services. Choosing which method to use in the accreditation prediction process becomes a serious problem, so the prediction results can be the closest or most accurate. Machine Learning is an application that is part of Artificial Intelligence which is widely used in prediction research. In this experiment, three algorithms in machine learning are tested, namely SVM, KNN and ANN. This study uses data from the accreditation results of early childhood education institutions in South Kalimantan; the sample data is 75%, and the remaining data is 25%. The results of the KNN algorithm with Euclidean distance and the number of neighbours 5 have the best performance in predicting the value of the accreditation predicate compared to other methods. The results of calculations using the KNN method produce Area Under Curve values of 1,000, CA 1,000, F1 1,000, precision 1,000 and Recall 1,000.
Downloads
References
C. D. Diem, P. Darusmiyati, and M. D. Sitinjak, “The Correlation between School Accreditation and Students’ English Achievement of Public Senior High Schools,” Stud. Linguist. Lit., vol. 5, no. 2, p. p17, 2021, doi: 10.22158/sll.v5n2p17.
S. A. Makhoul, “Higher education accreditation, quality assurance and their impact to teaching and learning enhancement,” J. Econ. Adm. Sci., vol. 35, no. 4, pp. 235–250, 2019, doi: 10.1108/jeas-08-2018-0092.
C. Boyd-Swan and C. M. Herbst, “Influence of quality credentialing programs on teacher characteristics in center-based early care and education settings,” Early Child. Res. Q., vol. 51, pp. 352–365, 2020, doi: 10.1016/j.ecresq.2019.12.013.
L. K. Chandler et al., “The Alignment of CEC/DEC and NAEYC Personnel Preparation Standards,” Topics Early Child. Spec. Educ., vol. 32, no. 1, pp. 52–63, 2012, doi: 10.1177/0271121412437047.
S. N. Asiah, “Analisis Manajemen PAUD Berbasis Standar Akreditasi PAUD dan PNF di Kutai Kartanegara,” SYAMIL J. Pendidik. Agama Islam (Journal Islam. Educ., vol. 6, no. 1, pp. 51–64, 2018, doi: 10.21093/sy.v6i1.1325.
H. R. Putera, Z. F. Ikatrinasari, and H. H. Purba, “Usulan Perbaikan Pelayanan Pendidikan Menggunakan Metode QFD dengan Pendekatan Variabel SERVQUAL,” vol. 9, no. 2, 2022.
J. Sun, Z. Zhang, X. Liu, and H. Zheng, “Reduced Methane Combustion Mechanism and Verification, Validation, and Accreditation (VV&A) in CFD for NO Emission Prediction,” J. Therm. Sci., vol. 30, no. 2, pp. 610–623, 2021, doi: 10.1007/s11630-020-1321-3.
S. D. Mondal, D. N. Ghosh, and P. K. Dey, “Prediction of NAAC Grades for Affiliated Institute with the help of Statistical Multi Criteria Decision Analysis,” vol. 1, no. 2, pp. 116–126, 2021.
L. Genisa and D. I. Mulyana, “Implementasi Penerapan Metode C4.5 dan Naïve Bayes Dalam Tingkat Kelulusan Akreditasi Lembaga PAUD Pada Badan Akreditasi Nasional,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1595, 2021, doi: 10.30865/mib.v5i4.3267.
I. K. Nti, O. Nyarko-Boateng, F. A. Adekoya, and B. A. Weyori, “An empirical assessment of different kernel functions on the performance of support vector machines,” Bull. Electr. Eng. Informatics, vol. 10, no. 6, pp. 3403–3411, 2021, doi: 10.11591/eei.v10i6.3046.
Z. Rustam, F. Zhafarina, J. E. Aurelia, and Y. Amalia, “Twin support vector machine using kernel function for colorectal cancer detection,” Bull. Electr. Eng. Informatics, vol. 10, no. 6, pp. 3121–3126, 2021, doi: 10.11591/eei.v10i6.3179.
A. S. R. M. Sinaga, R. E. Putra, and A. S. Girsang, “Prediction measuring local coffee production and marketing relationships coffee with big data analysis support,” Bull. Electr. Eng. Informatics, vol. 11, no. 5, pp. 2764–2772, 2022, doi: 10.11591/eei.v11i5.4082.
Y. Liang, S. Hu, W. Guo, and H. Tang, “Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM,” Meas. J. Int. Meas. Confed., vol. 187, no. November 2021, p. 110247, 2022, doi: 10.1016/j.measurement.2021.110247.
K. C. Onyelowe, C. B. Mahesh, B. Srikanth, C. Nwa-David, J. Obimba-Wogu, and J. Shakeri, “Support vector machine (SVM) prediction of coefficients of curvature and uniformity of hybrid cement modified unsaturated soil with NQF inclusion,” Clean. Eng. Technol., vol. 5, p. 100290, 2021, doi: 10.1016/j.clet.2021.100290.
K. S. Nugroho, A. Y. Sukmadewa, A. Vidianto, and W. F. Mahmudy, “Effective predictive modelling for coronary artery diseases using support vector machine,” IAES Int. J. Artif. Intell., vol. 11, no. 1, pp. 345–355, 2022, doi: 10.11591/ijai.v11.i1.pp345-355.
J. Song, J. Zhu, and S. Li, “Continuous prediction method of earthquake early warning magnitude for high-speed railway based on support vector machine,” Railw. Sci., 2022, doi: 10.1108/rs-04-2022-0002.
H. Puri, J. Chaudhary, K. R. Raghavendra, R. Mantri, and K. Bingi, “Prediction of Heart Stroke Using Support Vector Machine Algorithm,” 2021 8th Int. Conf. Smart Comput. Commun. Artif. Intell. AI Driven Appl. a Smart World, ICSCC 2021, pp. 21–26, 2021, doi: 10.1109/ICSCC51209.2021.9528241.
S. Verma, G. T. Thampi, and M. Rao, “ANN based method for improving gold price forecasting accuracy through modified gradient descent methods,” IAES Int. J. Artif. Intell., vol. 9, no. 1, pp. 46–57, 2020, doi: 10.11591/ijai.v9.i1.pp46-57.
G. You, B. Wang, J. Li, A. Chen, and J. Sun, “The prediction of MOE of bamboo-wood composites by ANN models based on the non-destructive vibration testing,” J. Build. Eng., vol. 59, no. July, p. 105078, 2022, doi: 10.1016/j.jobe.2022.105078.
M. N. Amogha Hegde, M. S. Naik, S. N. Chaitra, M. Madhavi, and A. Ravichandra, “Prediction and Analysis of Water Requirement in Automated Irrigation System using Artificial Neural Network(ANN) and Lora Technology,” 2021 IEEE Int. Conf. Distrib. Comput. VLSI, Electr. Circuits Robot. Discov. 2021 - Proc., pp. 88–92, 2021, doi: 10.1109/DISCOVER52564.2021.9663706.
S. K. Jauhar, “A DEA-ANN-based analytical framework to assess and predict the efficiency of Canadian universities in a service supply chain context,” 2022, doi: 10.1108/BIJ-08-2021-0458.
B. Wang and Z. Mao, “A dynamic ensemble outlier detection model based on an adaptive k-nearest neighbor rule,” Inf. Fusion, vol. 63, no. October 2019, pp. 30–40, 2020, doi: 10.1016/j.inffus.2020.05.001.
H. Ohmaid, S. Eddarouich, A. Bourouhou, and M. Timouyas, “Comparison between svm and knn classifiers for iris recognition using a new unsupervised neural approach in segmentation,” IAES Int. J. Artif. Intell., vol. 9, no. 3, pp. 429–438, 2020, doi: 10.11591/ijai.v9.i3.pp429-438.
X. Ding, K. Charlotte, L. Li, and S. X. Ding, “Isolation in Dynamic Systems Using Data-Driven in -Gap Metric based based kNN Algorithm based kNN Algorithm based kNN based kNN,” IFAC Pap., vol. 55, no. 6, pp. 169–174, 2022, doi: 10.1016/j.ifacol.2022.07.124.
C. Chethana, “Prediction of heart disease using different KNN classifier,” Proc. - 5th Int. Conf. Intell. Comput. Control Syst. ICICCS 2021, no. Iciccs, pp. 1186–1194, 2021, doi: 10.1109/ICICCS51141.2021.9432178.
K. S. K. Reddy and K. V. Kanimozhi, “Novel Intelligent Model for Heart Disease Prediction using Dynamic KNN (DKNN) with improved accuracy over SVM,” 2022 Int. Conf. Bus. Anal. Technol. Secur. ICBATS 2022, 2022, doi: 10.1109/ICBATS54253.2022.9758996.
“Akreditasi BAN PAUD dan PNF.” [Online]. Available: https://akreditasi.banpaudpnf.or.id/data/0/150000. [Accessed: 13-Sep-2022].
I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with different kernels,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5497–5506, 2020, doi: 10.11591/IJECE.V10I5.PP5497-5506.
G. V. Gopal and G. R. M. Babu, “An ensemble feature selection approach using hybrid kernel based SVM for network intrusion detection system,” Indones. J. Electr. Eng. Comput. Sci., vol. 23, no. 1, pp. 558–565, 2021, doi: 10.11591/ijeecs.v23.i1.pp558-565.
N. S. A. Yasmin, N. A. Wahab, and A. N. Anuar, “Improved support vector machine using optimization techniques for an aerobic granular sludge,” Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1835–1843, 2020, doi: 10.11591/eei.v9i5.2264.
M. T. Tally and H. Amintoosi, “A hybrid method of genetic algorithm and support vector machine for intrusion detection,” Int. J. Electr. Comput. Eng., vol. 11, no. 1, pp. 900–908, 2021, doi: 10.11591/ijece.v11i1.pp900-908.
J. Xu, W. Zeng, Y. Lan, J. Guo, and X. Cheng, “Modeling the parameter interactions in ranking SVM with low-rank approximation,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 6, pp. 1181–1193, 2019, doi: 10.1109/TKDE.2018.2851257.
T. Altalmas, S. Ahmad, N. N. W. N. Hashim, S. S. Hassan, and W. Sediono, “Characteristics with opposite of quranic letters mispronunciation detection: a classifier-based approach,” Bull. Electr. Eng. Informatics, vol. 11, no. 5, pp. 2817–2827, 2022, doi: 10.11591/eei.v11i5.3715.
A. R. Lubis, M. Lubis, and Al-Khowarizmi, “Optimization of distance formula in k-nearest neighbor method,” Bull. Electr. Eng. Informatics, vol. 9, no. 1, pp. 326–338, 2020, doi: 10.11591/eei.v9i1.1464.
M. J. Al Dujaili, A. Ebrahimi-Moghadam, and A. Fatlawi, “Speech emotion recognition based on SVM and KNN classifications fusion,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, pp. 1259–1264, 2021, doi: 10.11591/ijece.v11i2.pp1259-1264.
N. Qu et al., “Machine learning guided phase formation prediction of high entropy alloys,” Mater. Today Commun., vol. 32, no. April, p. 104146, 2022, doi: 10.1016/j.mtcomm.2022.104146.
N. Benayad, Z. Soumaya, B. D. Taoufiq, and A. Abdelkrim, “Features selection by genetic algorithm optimization with k-nearest neighbour and learning ensemble to predict Parkinson disease,” Int. J. Electr. Comput. Eng., vol. 12, no. 2, pp. 1982–1989, 2022, doi: 10.11591/ijece.v12i2.pp1982-1989.
L. Xiong and Y. Yao, “Study on an adaptive thermal comfort model with K-nearest-neighbors (KNN) algorithm,” Build. Environ., vol. 202, no. June, p. 108026, 2021, doi: 10.1016/j.buildenv.2021.108026.
R. Ma, J. Ban, Q. Wang, and T. Li, “Statistical spatial-temporal modeling of ambient ozone exposure for environmental epidemiology studies: A review,” Sci. Total Environ., vol. 701, p. 134463, 2020, doi: 10.1016/j.scitotenv.2019.134463.
A. G. Farizawani, M. Puteh, Y. Marina, and A. Rivaie, “A review of artificial neural network learning rule based on multiple variant of conjugate gradient approaches,” J. Phys. Conf. Ser., vol. 1529, no. 2, 2020, doi: 10.1088/1742-6596/1529/2/022040.
A. Afandi, N. Lusi, I. Catrawedarma, and B. Rudiyanto, “Prediction of Temperature in 2 Meters Temperature Probe Survey in Blawan Geothermal Field Using Artificial Neural Network (ANN) Method,” SSRN Electron. J., vol. 38, no. October 2021, p. 102309, 2021, doi: 10.2139/ssrn.3954816.
A. Muneer, R. F. Ali, A. Alghamdi, S. M. Taib, A. Almaghthawi, and E. A. Abdullah Ghaleb, “Predicting customers churning in banking industry: A machine learning approach,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 1, pp. 539–549, 2022, doi: 10.11591/ijeecs.v26.i1.pp539-549.
M. S. Khrisat and Z. A. Alqadi, “Solving multiple linear regression problem using artificial neural network,” vol. 12, no. 1, pp. 770–775, 2022, doi: 10.11591/ijece.v12i1.pp770-775.
R. Meenal, A. I. Selvakumar, P. A. Michael, and E. Rajasekaran, “Sensitivity analysis based artificial neural network approach for global solar radiation prediction in India,” vol. 20, no. 1, pp. 31–38, 2020, doi: 10.11591/ijeecs.v20.i1.pp31-38.
M. Yanto, S. Sanjaya, Yulasmi, D. Guswandi, and S. Arlis, “Implementation multiple linear regresion in neural network predict gold price,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 3, pp. 1635–1642, 2021, doi: 10.11591/ijeecs.v22.i3.pp1635-1642.
W. Rizka, U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain Informatics J., vol. 5, no. 2, pp. 2548–5113, 2020, doi: 10.21111/fij.v5i2.4449.
F. Febrian, “Perbandingan Teknik Klasifikasi Neural Network, Support Vector Machine, dan Naive Bayes dalam Mendeteksi Kanker Payudara,” BINA Insa. ICT J., vol. 7, no. 1, pp. 53–62, 2020.
Copyright (c) 2023 Noripansyah -
This work is licensed under a Creative Commons Attribution 4.0 International License.