RECOGNITION OF REAL-TIME HANDWRITTEN CHARACTERS USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

  • Muhammad Satrio Gumilang Informatics, Faculty of Science & Technology, Universitas Teknologi Yogyakarta, Indonesia
  • Donny Avianto Informatics, Faculty of Science & Technology, Universitas Teknologi Yogyakarta, Indonesia
Keywords: Convolutional Neural Network, Handwriting Patterns, OpenCV

Abstract

Pattern recognition, including handwriting recognition, has become increasingly common in everyday life, as is recognizing important files, agreements or contracts that use handwriting. In handwriting recognition, there are two types of methods commonly used, namely online and offline recognition. In online recognition, handwriting patterns are associated with pattern recognition to generate and select distinctive patterns. In handwritten letter patterns, machine learning (deep learning) is used to classify patterns in a data set. One of the popular and accurate deep learning models in image classification is the convolutional neural network (CNN). In this study, CNN will be implemented together with the OpenCV library to detect and recognize handwritten letters in real-time. Data on handwritten alphabet letters were obtained from the handwriting of 20 students with a total of 1,040 images, consisting of 520 uppercase (A-Z) images and 520 lowercase (a-z) images. The data is divided into 90% for training and 10% for testing. Through experimentation, it was found that the best CNN architecture has 5 layers with features (32, 32, 64, 64, 128), uses the Adam optimizer, and conducts training with a batch size of 20 and 100 epochs. The evaluation results show that the training accuracy is between 85, 90% to 89.83% and testing accuracy between 84.00% to 87.00%, with training and testing losses ranging from 0.322 to 0.499. This research produces the best CNN architecture with training and testing accuracy obtained from testing. The developed CNN model can be used as a reference or basis for the development of more complex handwriting pattern recognition models or for pattern recognition in other domains, such as object recognition in computer vision, facial recognition, and other object detection.

Downloads

Download data is not yet available.

References

A. Raup, W. Ridwan, Y. Khoeriyah, Q. Yuliati Zaqiah, dan U. Islam Negeri Sunan Gunung Djati Bandung, “Deep learning dan penerapannya dalam pembelajaran,” JIIP (Jurnal Ilmiah Ilmu Pendidikan) , vol. 5, hlm. 3258–3267, 2022, [Daring]. Tersedia pada: http://Jiip.stkipyapisdompu.ac.id

G. F. Fitriana, “Pengenalan tulisan tangan angka menggunakan Self Organizing Maps (SOM),” Technology and Science (BITS), vol. 3, no. 1, hlm. 31–42, 2021, doi: 10.47065/bits.v3i1.1002.

N. Saqib, K. F. Haque, V. P. Yanambaka, dan A. Abdelgawad, “Convolutional-neural-network-based handwritten character recognition: an approach with massive multisource data,” Algorithms, vol. 15, no. 4, Apr 2022, doi: 10.3390/a15040129.

O. Sudana, I. W. Gunaya, dan I. K. G. D. Putra, “Handwriting identification using deep convolutional neural network method,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 4, hlm. 1934–1941, 2020, doi: 10.12928/TELKOMNIKA.V18I4.14864.

R. Fadiyah Alya dan M. Wibowo, “Classification of batik motif using transfer learning on convolutional neural network (CNN),” vol. 4, no. 1, hlm. 161–170, 2023, doi: 10.20884/1.jutif.2023.4.1.564.

I. Khandokar, M. Hasan, F. Ernawan, S. Islam, dan M. N. Kabir, “Handwritten character recognition using convolutional neural network,” dalam Journal of Physics: Conference Series, IOP Publishing Ltd, Jun 2021. doi: 10.1088/1742-6596/1918/4/042152.

I. Riadi, A. Fadlil, P. Annisa, A. Dahlan, dan J. Soepomo Sh, “Identifikasi Tulisan Tangan Huruf Katakana Jepang Dengan Metode Euclidean,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 4, hlm. 29–37, 2020, [Daring]. Tersedia pada: http://tunasbangsa.ac.id/ejurnal/index.php/jsakti

T. Matius Surya Mulyana, “Implementasi algoritma freeman chain code dan algoritma k-nearest neighbor dalam pengenalan huruf mandarin,” Jurnal Riset Komputer), vol. 9, no. 4, hlm. 2407–389, 2022, doi: 10.30865/jurikom.v9i4.4532.

A. Willyanto, D. Alamsyah, dan H. Irsyad, “Identifikasi tulisan tangan aksara jepang hiragana menggunakan metode CNN arsitektur VGG-16,” Jurnal Algoritme, vol. 2, no. 1, hlm. 1–11, 2021.

C. S. Ley, A. Syammi, dan B. Ab Ghafar, “Handwritten character recognition using convolutional neural network,” Progress in Engineering Application and Technology, vol. 2, no. 1, hlm. 593–611, 2021, doi: 10.30880/peat.2021.02.01.058.

N. D. Miranda, L. Novamizanti, dan S. Rizal, “Convolutional neural network pada klasifikasi sidik jari menggunakan resnet-50,” Jurnal Teknik Informatika (Jutif), vol. 1, no. 2, hlm. 61–68, Des 2020, doi: 10.20884/1.jutif.2020.1.2.18.

E. Tanuwijaya, R. L. Lordianto, dan R. A. Jasin, “Pengenalan wajah manusia pada aplikasi video conference menggunakan metode pipeline cnn,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 2, hlm. 421–427, 2022, doi: 10.20884/1.jutif.2022.3.2.219.

R. Mehindra Prasmatio, B. Rahmat, dan I. Yuniar, “Deteksi dan pengenalan ikan menggunakan algoritma convolutional neural network,” Jurnal Informatika dan Sistem Informasi (JIFoSI), vol. 1, no. 2, hlm. 510–521, 2020.

D. Irfan, R. Rosnelly, M. Wahyuni, J. T. Samudra, dan A. Rangga, “Perbandingan optimasi sgd, adadelta, dan adam dalam klasifikasi hydrangea menggunakan cnn,” 2022. [Daring]. Tersedia pada: http://jurnal.goretanpena.com/index.php/JSSR

R. Haris Alfikri dkk., “Pembangunan aplikasi penerjemah bahasa isyarat dengan metode cnn berbasis android,” TEKNOINFO, vol. 16, no. 2, hlm. 183–197, 2022, [Daring]. Tersedia pada: https://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index

Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. Sy, dan M. A. Pramuditho, “Optimasi convolutional neural network dan k-fold cross validation pada sistem klasifikasi glaukoma,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 3, hlm. 728, Jul 2022, doi: 10.26760/elkomika.v10i3.728.

A. D. Aryanto, J. Santoso, dan D. D. Purwanto, “Sistem rekomendasi obat pengganti menggunakan metode cnn,” Surabaya Jurnal Sistem Cerdas dan Rekayasa (JSCR), vol. 3, no. 1, hlm. 2656–7504, 2021.

Published
2023-10-05
How to Cite
[1]
M. S. Gumilang and D. Avianto, “RECOGNITION OF REAL-TIME HANDWRITTEN CHARACTERS USING CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE”, J. Tek. Inform. (JUTIF), vol. 4, no. 5, pp. 1143-1150, Oct. 2023.