APPLICATION OF K-NEAREST NEIGHBOR (KNN) METHOD TO DETERMINE CUPANG FISH USING CANNY EDGE DETECTION AND INVARIANT MOMENT

  • Fajar Shidiq Program Studi Teknik Informatika, Universitas Siliwangi, Indonesia
  • Eka Wahyu Hidayat Program Studi Teknik Informatika, Universitas Siliwangi, Indonesia
  • Neng Ika Kurniati Program Studi Teknik Informatika, Universitas Siliwangi, Indonesia
Keywords: Betta Fish, K-Nearest Neighbor, Canny Edge Detection, Invariant Moment

Abstract

Betta fish are known as fighting fish, are aggressive and like to attack several types of Betta fish. They have attractive body colors, beautiful fins, calm and dignified movements. However, there are still many people who are wrong in distinguishing the types of betta fish, especially for those who just bought them, so to help determine the type of betta fish, a Matlab application was built to determine the types of betta fish based on their shape. K-Nearest Neighbor can classify objects based on learning data that is closest to the object so that the results can be more accurate. Canny is known as the optimal edge detection, this algorithm provides a low error rate. Invariant Moment is a feature extraction method that produces 7 features used to recognize an object. The combination of K-Nearest Neighbor, Canny, and Invariant Moment resulted in a fairly high accuracy for determining the type of betta fish, namely an average of 68.5714%, for training data with a total of 70 betta fish data, and 70%, for test data with the number 20 Betta fish data.

Downloads

Download data is not yet available.

References

N. C. Y. Setiawan, “Penerapan Metode Naive Bayes Untuk Menentukan Jenis Ikan Cupang Hias,” Jurnal Universitas Nusantara PGRI Kediri, PP. 1-8, 2017.

S. Budi, “Kombinasi Metode Fordward Chaining Dan Certainty Factor Untuk Mendiagnosa Penyakit Pada Ikan Cupang,” Jurnal Universitas Nusantara PGRI Kediri, PP. 1-6, 2017.

M. A. Ashari, “Penentuan Juara Kontes Ikan Cupang Dengan Menggunakan Metode Promethee,” Jurnal Universitas Nusantara PGRI Kediri, PP. 1-8, 2019.

W. A. Saputra and A. Z. Arifin, “Seeded Region Growing Pada Ruang Warna HSI Untuk Segmentasi Citra Ikan Tuna,” Jurnal Infotel, Vol. 9, No. 1, PP. 56-63, 2017.

I. Hastuti, “Perbandingan Metode Deteksi Tepi Menggunakan Metode Canny, Prewitt Dan Sobel Pada Image Ikan,” Prosiding SNRT (Seminar Nasional Riset Terapan), PP. 129-137, 2016.

J. Moedjahedy, A. Bokang, and A. Raranta, “Aplikasi Pengenalan Ikan Hias Predator Air Tawar Menggunakan Teknologi Augmented Reality Berbasis Android,” Cogito Smart Journal, Vol. 3 No. 1, PP. 91-99, 2017.

B. A. Masse and A. N. Ainun, “Perancangan Aplikasi Magic Book Pengenalan Hewan Air Dengan Teknologi Augmented Reality,” Jurnal Elektronik Sistem Informasi dan Komputer, Vol. 4 No. 1, PP. 47-62, 2018.

R. Andrian, S. Anwar, A. M. Muhammad, and A. Junaidi, “Identifikasi Kupu-Kupu Menggunakan Ekstraksi Fitur Deteksi Tepi (Edge Detection) dan Klasifikasi K-Nearest Neighbor (KNN),” Jurnal Teknik Informatika dan Sistem Informasi, Vol. 5 No. 2, PP. 234-243, 2019.

A. Wulandari, S. Andryana, and A. Gunaryati, “Pengenalan Ikan Hias Laut Pada Anak Usia 3 Tahun Dengan Metode Marker Based Tracking Berbasis Augmented Reality,” Jurnal Teknologi & Manajemen Informatika, Universitas Nasional, Vol. 5 No. 1, PP. 1-8, 2019.

A. Y. Nugroho, “Sistem Pendukung Keputusan Dalam Menentukan Pemenang Kontes Ikan Cupang Hias Menggunakan Metode GAP Profile Matching,” IT Journal, Vol. 4 No. 1, PP. 99-108, 2016.

H. Surahman, A. Fuja, I. Rubandi, and Willy, “Pengenalan Jenis Pempek Menggunakan Metode Canny & K-Nearest Neighbor (KNN) Berdasarkan Bentuknya,” Jurnal STMIK GI MDP, PP. 1-11, 2017.

N. Wijaya and A. Ridwan, “Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors,” Jurnal SISFOKOM, Vol. 8, No. 1, PP. 74-78, 2019.

M. N. Khasanah, A. Harjoko, and I. Candradewi, “Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna Dan Bentuk Dengan Metode K-Nearest Neighbors (K-NN),” IJEIS, Vol. 6, No. 2, PP. 151-162, 2016.

F. Y. Manik and K. S. Saragih, “Klasifikasi Belimbing Menggunakan Naïve Bayes Berdasarkan Fitur Warna RGB,” JCCS, Vol. 11, No. 1, PP. 99-108, 2017.

M. Sari, Hassanudin, and R. Aditya, “Pengenalan Ikan Cupang (Betta Fish) Menggunakan Augmented Reality,” JTIULM, Vol. 1, No. 1, PP. 26-36, 2018.

Published
2022-02-25
How to Cite
[1]
F. Shidiq, E. W. Hidayat, and N. I. Kurniati, “APPLICATION OF K-NEAREST NEIGHBOR (KNN) METHOD TO DETERMINE CUPANG FISH USING CANNY EDGE DETECTION AND INVARIANT MOMENT”, J. Tek. Inform. (JUTIF), vol. 3, no. 1, pp. 11-20, Feb. 2022.