FUEL INCREASE SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE WITH PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM AS FEATURE SELECTION

  • Laura Imanuela Mustamu Informatics, School of Computing, Telkom University, Indonesia
  • Yuliant Sibaroni Informatics, School of Computing, Telkom University, Indonesia
Keywords: fuel increase, sentiment analysis, SVM, PSO, GA

Abstract

BBM, or fuel oil, is one of the essential needs of the Indonesian people. The government's policy regarding the increase in fuel prices raises many opinions from the public. Twitter is one of the social media that Indonesian people often use to express opinions on a topic. In this study, sentiment analysis was carried out on public opinion regarding the fuel price increase policy from Twitter social media. This research is expected to help determine public opinion regarding the fuel price increase policy with positive, neutral and negative sentiments. The sentiment analysis method used is the Support Vector Machine (SVM) classification algorithm. The results of the accuracy of SVM were compared with accuracy by adding a feature selection process. The Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) algorithms are used for the feature selection method. After several experiments using the three methods, the SVM method with the Radial Basis Function (RBF) kernel produced the best accuracy of 71.2%. The combination of the SVM method with the RBF and PSO kernels obtained an accuracy of 68.84%, and the combination of the RBF and GA kernel SVM methods obtained an accuracy of 69.52%.

Downloads

Download data is not yet available.

References

“Konsumsi Pertalite Capai 23 Juta KL, Paling Banyak Digunakan Masyarakat,” Kementerian Energi dan Sumber Daya Mineral, 2022. https://migas.esdm.go.id/post/read/konsumsi-pertalite-capai-23-juta-kl-paling-banyak-digunakan-masyarakat

M. A. Rizaty, “Pengguna Twitter di Indonesia Capai 18,45 Juta pada 2022,” Dataindonesia.id, 2022. https://dataindonesia.id/digital/detail/pengguna-twitter-di-indonesia-capai-1845-juta-pada-2022

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

M. Taradeh et al., “An evolutionary gravitational search-based feature selection,” Inf. Sci. (Ny)., vol. 497, pp. 219–239, Sep. 2019, doi: 10.1016/J.INS.2019.05.038.

D. A. Kristiyanti and M. Wahyudi, “Feature selection based on Genetic algorithm, particle swarm optimization and principal component analysis for opinion mining cosmetic product review,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, 2017, doi: 10.1109/CITSM.2017.8089278.

B. S. Prakoso, D. Rosiyadi, H. S. Utama, and D. Aridarma, “Klasifikasi Berita Menggunakan Algoritma Naive Bayes Classifer Dengan Seleksi Fitur Dan Boosting,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 2, pp. 227–232, 2019, doi: 10.29207/resti.v3i2.1042.

E. Purnamasari, D. P. Rini, and Sukemi, “Seleksi Fitur menggunakan Algoritma Particle Swarm Optimization pada Klasifikasi Kelulusan Mahasiswa dengan Metode Naive Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 469–475, 2020.

I. A. Ogunbiyi, “Web Scraping with Python – How to Scrape Data from Twitter using Tweepy and Snscrape,” freeCodeCamp, 2022. https://www.freecodecamp.org/news/python-web-scraping-tutorial/ (accessed Jan. 02, 2023).

A. Muzaki and A. Witanti, “Sentiment Analysis of the Community in the Twitter To the 2020 Election in Pandemic Covid-19 By Method Naive Bayes Classifier,” J. Tek. Inform., vol. 2, no. 2, pp. 101–107, 2021, doi: 10.20884/1.jutif.2021.2.2.51.

I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “COMPARISON OF CLASSIFICATION ALGORITHM AND FEATURE SELECTION IN BITCOIN SENTIMENT ANALYSIS,” J. Tek. Inform., vol. 3, no. 3, pp. 739–744, 2022.

A. I. Kadhim, “Term Weighting for Feature Extraction on Twitter: A Comparison between BM25 and TF-IDF,” 2019 Int. Conf. Adv. Sci. Eng. ICOASE 2019, pp. 124–128, 2019, doi: 10.1109/ICOASE.2019.8723825.

M. R. A. Utomo and Y. Sibaroni, “Text classification of british english and American english using support vector machine,” 2019 7th Int. Conf. Inf. Commun. Technol. ICoICT 2019, no. July 2019, 2019, doi: 10.1109/ICoICT.2019.8835256.

P. D. W. Mega and Haryoko, “Optimization of parameter support vector machine (SVM) using genetic algorithm to review go-jek’s services,” 2019 4th Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2019, vol. 6, pp. 301–304, 2019, doi: 10.1109/ICITISEE48480.2019.9003894.

O. H. Rahman, G. Abdillah, and A. Komarudin, “Klasifikasi Ujaran Kebencian pada Media Sosial Twitter Menggunakan Support Vector Machine,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 17–23, 2021, doi: 10.29207/resti.v5i1.2700.

S. A. Saputra, D. Rosiyadi, W. Gata, and S. M. Husain, “Google Play E-Wallet Sentiment Analysis Using Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019.

D. M. BrTarigan, D. P. Rini, and Samsuryadi, “Seleksi Fitur pada Klasifikasi Penyakit Gula Darah Menggunakan Particle Swarm Optimization (PSO) pada Algoritma C4.5,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 3, pp. 569–575, 2020.

S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, Genetic algorithm: Theory, literature review, and application in image reconstruction, vol. 811. Springer International Publishing, 2020. doi: 10.1007/978-3-030-12127-3_5.

C. A. Ramezan, T. A. Warner, and A. E. Maxwell, “Evaluation of sampling and cross-validation tuning strategies for regional-scale machine learning classification,” Remote Sens., vol. 11, no. 2, 2019, doi: 10.3390/rs11020185.

J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf. Sci. (Ny)., vol. 507, no. xxxx, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.

E. U. A. C. Khotimah, “Comparison Naïve Bayes Classifier, K-Nearest Neighbor And Support Vector Machine In The Classification Of Individual On Twitter Account,” J. Tek. Inform., vol. 3, pp. 673–680, 2022.

Published
2023-06-26
How to Cite
[1]
L. Imanuela Mustamu and Y. Sibaroni, “FUEL INCREASE SENTIMENT ANALYSIS USING SUPPORT VECTOR MACHINE WITH PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM AS FEATURE SELECTION”, J. Tek. Inform. (JUTIF), vol. 4, no. 3, pp. 521-528, Jun. 2023.