THE CALCULATION SYSTEM OF NUMBER OF PEOPLE IN A ROOM BASED ON HUMAN DETECTION USING HAAR-CASCADE CLASSIFIER
Abstract
Data of number of people in the room, calculations are usually carried out by assigning someone to oversee a room. In this final project, a system for calculating the number of people in the room is designed with image processing based on human detection that can be used in rooms, both for commercial applications and for security. This system uses Raspberry Pi device that already has an image processing method Haar-Cascade Classifier. Input data is in the form of video taken directly via webcam to be captured into a frame so that it can be used as a input the Haar-Cascade Classifier method and perform the counting process will be sent to the Antares platform. The system design has been tested with five scenarios. Scenario 1 the effect of the distance of the object, scenario 2 the effect of the pose of the object, scenario 3 the effect of the amount the object in the frame, scenario 4 affects the scale factor and scenario 5 measurement computation time. Scenarios 1 to 3 will do the best configuration for minimum neighbour. The system gets the best accuracy of 98,5% when the object distance 4 meters, the best accuracy of 96,6% when the object is facing forward and accuracy the best is 97,7% when the object in the frame is more than two objects with the best configuration use the minimum neighbour 5. Scenario 4 gets accuracy the best is 76,2% when using the scale factor 1.1. Scenario 5 gets the average computation time of the system is under one second, meaning the detection process done pretty fast.
Downloads
References
M. H. B. Pratama, A. Hidayatno, and A. A. Zahra, “Aplikasi Deteksi Gerak Pada Kamera Keamanan Menggunakan Metode Background Subtraction Dengan Algoritma Gaussian Mixture Model,” Transient J. Ilm. Tek. Elektro, vol. 6, no. 2, pp. 246–253, 2017.
H. Mulyawan, “Identifikasi dan Tracking Objek Berbasis Image Processing secara Real Time,” EEPIS Final Proj., 2011.
D. S. dan Hurriyatul Fitriyah dan Issa Arwani, “Sistem Penghitung Jumlah Orang Melewati Pintu Menggunakan Metode Background Subtraction Berbasis Raspberry Pi,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 2, pp. 2105–2113, 2018.
T. A. A. H. Kusuma, K. Usman, S. Saidah, “PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD,” J. Tek. Inform., vol. 2, no. 1, pp. 57–66, 2021.
C. H. Setjo, B. Achmad, and others, “Thermal image human detection using Haar-cascade classifier,” in 2017 7th International Annual Engineering Seminar (InAES), 2017, pp. 1–6.
Jonathan Sachs, “Digital Image Basics,” 1996.
D. I. S. Saputra, M. A. Triwibowo, M. F. Noeris, and M. Alasad, “Pengolahan Citra Negatif Klise Menjadi Citra True Color Dengan Matlab,” Sisfotenika, vol. 7, no. 1, pp. 85–95, 2017.
M. Ketcham and V. Inmoonnoy, “The message notification for patients care system using hand gestures recognition,” in 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), 2017, pp. 412–416.
F. Umam and others, “Implementasi Sistem Pendeteksian Target Berdasarkan Upper Body Dan Warna Pada Robot Pengikut Manusia,” J. Mikrotek, vol. 1, no. 1, pp. 11–16, 2018.
W. Sulistiyo, B. Suyanto, I. Hestiningsih, and others, “Rancang Bangun Prototipe Aplikasi Pengenalan Wajah untuk Sistem Absensi Alternatif dengan Metode Haar Like Feature dan Eigenface,” JTET (Jurnal Tek. Elektro Ter., vol. 3, no. 2, 2016.
R. Lumaris and E. Setyati, “DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE,” IDeaTech 2016, 2016.
A. Zhandos and J. Guo, “An approach based on decision tree for analysis of behavior with combined cycle power plant,” in 2017 International Conference on Progress in Informatics and Computing (PIC), 2017, pp. 415–419.
E. Y. Puspaningrum and W. S. J. Saputra, “DETEKSI WAJAH DENGAN BOOSTED CASCADE CLASSIFIER,” SCAN-Jurnal Teknol. Inf. dan Komun., vol. 13, no. 3, pp. 15–18, 2018.
A. Obukhov, “Haar classifiers for object detection with cuda,” in GPU Computing Gems Emerald Edition, Elsevier, 2011, pp. 517–544.
F. Timbane, S. Du, and R. Aylward, “The Experimental Comparison of Features for Hand Detection,” in 2018 International Conference on Intelligent and Innovative Computing Applications (ICONIC), 2018, pp. 1–7.
N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020.
S. Guennouni, A. Ahaitouf, and A. Mansouri, “A comparative study of multiple object detection using Haar-like feature selection and local binary patterns in several platforms,” Model. Simul. Eng., vol. 2015, 2015.
A. Dutta, “Object Detection and Facial Features Identification in Python using OpenCV,” 2019.
Copyright (c) 2021 Gusti Ngurah Rama Putra Atmaja, Koredianto Usman, Muhammad Ary Murti
This work is licensed under a Creative Commons Attribution 4.0 International License.