CYBERBULLYING DETECTION ON TWITTER USES THE SUPPORT VECTOR MACHINE METHOD

  • Bayu Indra Kusuma Information Systems, Faculty of Computer Science, Universitas Narotama, Indonesia
  • Aryo Nugroho Information Systems, Faculty of Computer Science, Universitas Narotama, Indonesia
Keywords: c-svc, cyberbullying, data mining, Nu-SVC, Support Vector Machine

Abstract

Social media is a platform that provides facilities for users to engage in various social activities. However, the increasing popularity of social media in the modern era also cannot be separated from the occurrence of several negative impacts, one of which is cyberbullying. Cyberbullying is an action that is done online that can harm the mental and emotional condition of an individual. To reduce this problem, this research aims to investigate the performance of the C-SVC and Nu-SVC algorithms from the Support Vector Machine method in classifying cyberbullying sentences. The data used is comments data from the @puanmaharani_ri account on Twitter, which was collected from September 25, 2020, to September 29, 2022, totaling 5,000 data. After the data is collected, it is labeled and preprocessed, and then the data will be weighted using the TF-IDF method. The result of the TF-IDF will be displayed in the form of a word cloud. Next, the Support Vector Machine method will classify cyberbullying sentences using several percentages split combinations such as 60%, 70%, 80%, and 90%. The test results show that the C-SVC method has the highest accuracy of 79.6% at a 70% percentage split, while Nu-SVC has the highest accuracy of 78.9% at a 60% percentage split. From these results, it can be concluded that the Support Vector Machine method with the C-SVC algorithm provides better results than Nu-SVC in classifying cyberbullying sentences.

Downloads

Download data is not yet available.

References

D. Primasti and S. I. Dewi, “Pengaruh media sosial terhadap penyimpangan perilaku remaja (cyberbullying),” Reformasi, vol. 7, no. 2, 2018.

R. Syah and I. Hermawati, “Upaya Pencegahan Kasus Cyberbullying bagi Remaja Pengguna Media Sosial di Indonesia,” J. Penelit. Kesejaht. Sos., vol. 17, no. 2, Art. no. 2, Jun. 2018, doi: 10.31105/jpks.v17i2.1473.

Z. Peng et al., “Associations between Chinese adolescents subjected to traditional and cyber bullying and suicidal ideation, self-harm and suicide attempts,” BMC Psychiatry, vol. 19, no. 1, p. 324, Dec. 2019, doi: 10.1186/s12888-019-2319-9.

E. B. Santoso and A. Nugroho, “Analisis Sentimen Calon Presiden Indonesia 2019 Berdasarkan Komentar Publik Di Facebook,” Eksplora Inform., vol. 9, no. 1, pp. 60–69, Sep. 2019, doi: 10.30864/eksplora.v9i1.254.

M. Syarifuddinn, “Analisis sentimen opini publik terhadap efek PSBB pada twitter dengan algoritma decision tree, knn, dan naïve bayes,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 87–94, 2020.

A. Amalia, D. Gunawan, Y. Fithri, and I. Aulia, “Automated Bahasa Indonesia essay evaluation with latent semantic analysis,” presented at the Journal of Physics: Conference Series, 2019, vol. 1235, no. 1, p. 012100.

Z. P. Putra and A. Nugroho, “Pebandingan Performa Naïve Bayes dan KNN pada Klasifikasi Teks Sentimen Jasa Ekspedisi,” JOINTECS J. Inf. Technol. Comput. Sci., vol. 6, no. 3, pp. 145–152, 2021.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” INSYST J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019.

A. Thakkar and K. Chaudhari, “Predicting stock trend using an integrated term frequency–inverse document frequency-based feature weight matrix with neural networks,” Appl. Soft Comput., vol. 96, p. 106684, Nov. 2020, doi: 10.1016/j.asoc.2020.106684.

F. Nausheen and S. H. Begum, “Sentiment analysis to predict election results using Python,” in 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, Jan. 2018, pp. 1259–1262. doi: 10.1109/ICISC.2018.8399007.

A. M. Puspitasari, D. E. Ratnawati, and A. W. Widodo, “Klasifikasi penyakit gigi dan mulut menggunakan metode Support Vector Machine,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput. E-ISSN, vol. 2548, p. 964X, 2018.

V. R. Oktavia, “Aplikasi Deteksi Kejadian di Jalan Raya berdasarkan Data Twitter Menggunakan Metode Support Vector Machine,” 2018.

S. I. Noviantho and L. Ashianti, “Cyberbullying classification using text mining,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), 2017, pp. 241–246.

R. R. Dalvi, S. Baliram Chavan, and A. Halbe, “Detecting A Twitter Cyberbullying Using Machine Learning,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, May 2020, pp. 297–301. doi: 10.1109/ICICCS48265.2020.9120893.

J. O. Atoum, “Cyberbullying Detection Through Sentiment Analysis,” in 2020 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, Dec. 2020, pp. 292–297. doi: 10.1109/CSCI51800.2020.00056.

I. Saputra and D. Rosiyadi, “Perbandingan Kinerja Algoritma K-Nearest Neighbor, Naïve Bayes Classifier dan Support Vector Machine dalam Klasifikasi Tingkah Laku Bully pada Aplikasi Whatsapp,” Fakt. Exacta, vol. 12, no. 2, p. 101, Jul. 2019, doi: 10.30998/faktorexacta.v12i2.4181.

M. Andriansyah et al., “Cyberbullying comment classification on Indonesian Selebgram using support vector machine method,” in 2017 Second International Conference on Informatics and Computing (ICIC), Jayapura, Nov. 2017, pp. 1–5. doi: 10.1109/IAC.2017.8280617.

Published
2024-01-31
How to Cite
[1]
B. I. Kusuma and Aryo Nugroho, “CYBERBULLYING DETECTION ON TWITTER USES THE SUPPORT VECTOR MACHINE METHOD”, J. Tek. Inform. (JUTIF), vol. 5, no. 1, pp. 11-17, Jan. 2024.