SENTIMENT ANALYSIS OF POST-COVID-19 INFLATION BASED ON TWITTER USING THE K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION METHODS

  • Ratih Puspitasari Informatics Study Program, Faculty of Science and Technology, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Yulian Findawati Informatics Study Program, Faculty of Science and Technology, Universitas Muhammadiyah Sidoarjo, Indonesia
  • Mochamad Alfan Rosid Informatics Study Program, Faculty of Science and Technology, Universitas Muhammadiyah Sidoarjo, Indonesia
Keywords: COVID-19, Inflation, K-Nearest Neighbor, Sentiment Analysis, Support Vector Machine

Abstract

The COVID-19 pandemic caused a crisis in global economic growth. The impact of injuries due to the COVID-19 pandemic has also caused price increases and an increase in the inflation rate. Inflation is a price increase caused by a certain factor so that it has an impact on the prices of nearby goods which increase the circulation of money in society to increase. Many people expressed their various opinions or criticisms of the post-COVID-19 price increase policy on social media, one of which was via Twitter. Sentiment analysis was carried out to see how public sentiment is towards the price increase policy after the COVID-19 pandemic, and these sentiments are combined into multiclasses, namely positive, negative and neutral sentiments. So that this sentiment can later be used as material for evaluation regarding the post-COVID-19 price increase policy. This study aims to see and compare the accuracy of the two classification methods, namely K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) in the sentiment classification process. The data used was 5989 tweets with the keywords ""Stuffets Go Up Post-Pandemic", "Fuel Goes Up", "Inflation 2022", "Covid19 Inflation", "Inflation Post-Pandemic" with a data collection period from August to October 2022. The data obtained then enter the text preprocessing stage before later entering the classification stage. The results obtained after carrying out the classification using the K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) methods show that the Support Vector Machine (SVM) method has a higher accuracy of 79%, while the K-Nearest Neighbor (K -NN) has an accuracy of 54%.

Downloads

Download data is not yet available.

References

A. I. Fahrika and J. Roy, “Dampak pandemi covid 19 terhadap perkembangan makro ekonomi di indonesia dan respon kebijakan yang ditempuh,” Inovasi, vol. 16, no. 2, pp. 206–213, 2020.

D. Anggraeni, H. Sirait, D. Rahandri, U. D. Persada, and U. Muhammadiyah, “DAMPAK INFLASI TERHADAP SEKTOR EKONOMI PASCAPANDEMI COVID-19,” vol. 7, no. 7, 2022.

B. P. Statistik, “Ekonomi Indonesia Triwulan III-2022 Tumbuh 5,72 Persen (y-on-y),” Badan Pusat Statistik, 2022. https://www.bps.go.id/.

S. Bunga, D. A. N. Resesi, T. Kinerja, and M. H. Saputra, “SAHAM PERUSAHAAN PROPERTI DAN REAL ESTATE,” vol. 11, no. 04, pp. 981–992, 2022.

U. Kurniasih and A. T. Suseno, “Analisis Sentimen Terhadap Bantuan Subsidi Upah ( BSU ) pada Kenaikan Harga Bahan Bakar Minyak ( BBM ),” vol. 6, pp. 2335–2340, 2022, doi: 10.30865/mib.v6i4.4958.

D. Darwis, N. Siskawati, and Z. Abidin, “PENERAPAN ALGORITMA NAIVE BAYES UNTUK ANALISIS SENTIMEN REVIEW DATA TWITTER BMKG NASIONAL,” J. Tekno Kompak, vol. 15, no. 1, p. 131, 2021, doi: 10.33365/jtk.v15i1.744.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” vol. 10, pp. 71–76, 2020.

A. Muzaki and A. Witanti, “SENTIMENT ANALYSIS OF THE COMMUNITY IN THE TWITTER TO THE 2020 ELECTION IN PANDEMIC COVID-19 BY METHOD NAIVE BAYES CLASSIFIER SENTIMEN ANALISIS MASYARAKAT DI TWITTER TERHADAP PILKADA 2020 DITENGAH PANDEMIC COVID-19 DENGAN METODE NA I ̈ VE BAYES CLASSIFIER,” vol. 2, no. 2, pp. 101–107, 2021.

S. Lestari, M. Mupaat, and A. Erfina, “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,” vol. 8, no. 1, 2022.

J. Jtik, J. Teknologi, T. W. Putra, and A. Triayudi, “Analisis Sentimen Pembelajaran Daring menggunakan Metode Naïve Bayes , KNN , dan Decision Tree,” vol. 6, no. 1, 2022.

B. Laurensz and Eko Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 118–123, 2021, doi: 10.22146/jnteti.v10i2.1421.

M. Afdal and L. Rahma Elita, “Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 8, no. 1, pp. 78–87, 2022.

U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” vol. 5, pp. 157–163, 2021, doi: 10.30865/mib.v5i1.2604.

N. Hidayati, J. Suntoro, and G. G. Setiaji, “Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM,” J. Sains dan Inform., vol. 7, no. 2, pp. 117–126, 2021, doi: 10.34128/jsi.v7i2.313.

A. Dwiki et al., “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Bibit Dan Bareksa Dengan Algoritma KNN,” vol. 8, no. 2, pp. 636–646, 2021.

B. Pamungkas, M. E. Purbaya, and D. J. A. K, “Analisis Sentimen Twitter Menggunakan Metode Support Vector Machine ( SVM ) pada,” vol. 8106, pp. 10–20, 2021.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 231–237, 2021, doi: 10.29207/resti.v5i2.2698.

M. A. Nurrohmat and A. SN, “Sentiment Analysis of Novel Review Using Long Short-Term Memory Method,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, p. 209, 2019, doi: 10.22146/ijccs.41236.

A. Rahman et al., “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 8, no. 2, pp. 299–303, 2022, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/54704.

I. Yunanto and S. Yulianto, “TWITTER SENTIMENT ANALYSIS PEDULILINDUNGI APPLICATION USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE ANALISIS SENTIMEN TWITTER APLIKASI PEDULILINDUNGI,” vol. 3, no. 4, pp. 807–814, 2022.

Iskandar, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 158, pp. 1120–1126, 2021.

F. Astuti and R. Taufan, “Sentimen Analisis Vaksinasi Covid - 19 pada Twitter Menggunakan Algoritma Klasifikasi Berbasis PSO/ Sentiment Analysis of Covid-19 Vaccination on Twitter using Classification Algorithms based on PSO,” Sist. J. Sist. InformasiEMASI, vol. 11, pp. 364–376, 2022.

A. Asro’i and H. Februariyanti, “Analisis Sentimen Pengguna Twitter Terhadap Perpanjangan Ppkm Menggunakan Metode K-Nearest Neighbor,” J. Khatulistiwa Inform., vol. 10, no. 1, pp. 17–24, 2022, doi: 10.31294/jki.v10i1.12624.

D. Siswanto, L. Nijal, and S. Rajab, “Analisa Sentimen Publik Mengenai Perekonomian Indonesia Pada Masa Pandemi Covid-19 Di Twitter Menggunakan Metode Klasifikasi K-Nn Dan Svm,” vol. 2, no. 1, pp. 1–9, 2022.

Published
2023-08-16
How to Cite
[1]
Ratih Puspitasari, Y. Findawati, and M. A. Rosid, “SENTIMENT ANALYSIS OF POST-COVID-19 INFLATION BASED ON TWITTER USING THE K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE CLASSIFICATION METHODS”, J. Tek. Inform. (JUTIF), vol. 4, no. 4, pp. 669-679, Aug. 2023.