DESIGN AND BUILD VEHICLE PLATE DETECTION SYSTEM USING YOU ONLY LOOK ONCE METHOD BASED ON ANDROID

  • Yolan Anjani Usen Information Systems, Faculty of Engineering and Computer Science, Universitas Kristen Krida Wacana, Indonesia
  • Cynthia Hayat Information Systems, Faculty of Engineering and Computer Science, Universitas Kristen Krida Wacana, Indonesia
Keywords: image processing, license plate, object detection, YOLO

Abstract

The method of collecting the vehicle data is conducted conventionally by gathering data from each region to be converted into single, raw information in the form of vehicle plates for all regions, to be processed on a computer and sent to the Central Bureau of Statistics. It is then transformed into a form of national data file that provides information on vehicle plates for the Indonesian people. This kind of data gathering method requires a lot of time and effort. Therefore, it is a concern for researchers to detect vehicle plates using image processing by utilizing the Android-based You Only Look Once method. The YOLOv4 technique is used because it processes image data directly with optimal performance in order to produce faster predictions. In its application, the researchers use Google Collaboratory to create models and Android Studio for android applications. At the same time, the parameters studied were precision, recall, F1 score, average IoU, and mAP. By using the "Vehicle Registration Plate" dataset, the ratio of which is 70% in training data and 30% in data validation, an accuracy of 77% is obtained with a detection time of 0.05 seconds, whereas the average accuracy value is 86.82%. Therefore, it can be concluded that this study has an optimized performance for detecting vehicle plates using the Android application.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, “Informasi Umum,” 2022. https://www.bps.go.id/menu/1/informasi-umum.html#masterMenuTab5 (accessed Dec. 15, 2022).

M. Michael, F. Tanoto, E. Wibowo, F. Lutan, and A. Dharma, “Pengenalan Plat Kendaraan Bermotor dengan Menggunakan Metode Template Matching dan Deep Belief Network”, MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 19, no. 1, pp. 27-36, Nov.2019.

Badan Pusat Statistik, “Pengolahan Data,” 2022. https://www.bps.go.id/menu/1/pengolahan-data.html#masterMenuTab5 (accessed Dec. 15, 2022).

T. A. A. H. Kusuma, K. Usman, and S. Saidah, “PEOPLE COUNTING FOR PUBLIC TRANSPORTATIONS USING YOU ONLY LOOK ONCE METHOD”, J. Tek. Inform. (JUTIF), vol. 2, no. 1, pp. 57-66, Feb. 2021.

C. N. Liunanda, S. Rostianingsih, and A. N. Purbowo, “Implementasi Algoritma YOLO pada Aplikasi Pendeteksi Senjata Tajam di Android,” J. Infra, vol. 8, no. 2, pp. 1–7, 2020.

K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” J. Tek. ITS, vol. 10, no. 1, pp. 50–55, 2021, doi: 10.12962/j23373539.v10i1.61622.

F. Rofii, G. Priyandoko, M. I. Fanani, and A. Suraji, "Peningkatan Akurasi Penghitungan Jumlah Kendaraan dengan Membangkitkan Urutan Identitas Deteksi Berbasis Yolov4 Deep Neural Networks," TEKNIK, vol. 42, no. 2, pp. 169-177, Aug. 2021.

E. Tirtana, K. Gunadi, and I. Sugiarto, “Penerapan Metode YOLO dan Tesseract-OCR untuk Pendataan Plat Nomor Kendaraan Bermotor Umum di Indonesia Menggunakan Raspberry Pi,” J. Infra, vol. 9, no. 2, pp. 241–247, 2021, [Online]. Available:https://publication.petra.ac.id/index.php/teknik-informatika/article/view/11454

M. D. Anggraini, K. Kusrini, and H. Al Fatta, “SOCIAL DISTANCING DETECTION FINDING OPTIMAL ANGLE WITH YOLO V3 DEEP LEARNING METHOD”, J. Tek. Inform. (JUTIF), vol. 3, no. 5, pp. 1449-1455, Oct. 2022

J. Yu and W. Zhang, “Face MaskWearing Detection Algorithm Based on Improved YOLO-v4,” Sensors, vol. 21, no. 9, pp. 1–21, 2022, doi: 10.1088/1742-6596/2258/1/012013.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” 2020, [Online]. Available: http://arxiv.org/abs/2004.10934

N. Rochmawati, H. B. Hidayati, Y. Yamasari, H. P. A. Tjahyaningtijas, W. Yustanti, and A. Prihanto, “Analisa Learning Rate dan Batch Size pada Klasifikasi Covid Menggunakan Deep Learning dengan Optimizer Adam,” J. Inf. Eng. Educ. Technol., vol. 5, no. 2, pp. 44–48, 2021, doi: 10.26740/jieet.v5n2.p44-48.

R. L. Pradana, A. Khumaidi, and R. Andiana, “Identifikasi Penyebab Cacat Pada Hasil Pengelasan Dengan Image Processing Menggunakan Metode YOLO,” J. Tek. Elektro dan Komput. Triac, vol. 9, no. 3, pp. 1–5, 2022.

G. Zhang, L. Ge, Y. Yang, Y. Liu, and K. Sun, “Fused Confidence for Scene Text Detection via Intersection-over-Union,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT), 2019, pp. 1540–1543, doi: 10.1109/ICCT46805.2019.8947307.

D. H. Prayitna and A. Djajadi, “Perancangan Prototype Deteksi Kelengkapan,” J. Inov. Inform. Univ. Pradita, vol. 7, no. 1, pp. 57–69, 2022.

M. E. Laily, F. N. Fajri, and G. Q. O. Pratamasunu, “Deteksi Penggunaan Alat Pelindung Diri (APD) Untuk Keselamatan dan Kesehatan Kerja Menggunakan Metode Mask Region Convolutional Neural Network (Mask R-CNN),” urnal Komput. Terap., vol. 8, no. 2, pp. 279–288, 2022.

L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” J. Nas. Ilmu Komput., vol. 2, no. 3, pp. 213–232, 2021, doi: 10.47747/jurnalnik.v2i3.534.

V. Sowmya and R. Radha, “Comparative Analysis on Deep Learning Approaches for Heavy-Vehicle Detection based on Data Augmentation and Transfer-Learning techniques,” J. Sci. Res., vol. 13, no. 3, pp. 809–820, 2021, doi: 10.3329/jsr.v13i3.52332.

A. Nurhopipah and U. Hasanah, “Dataset Splitting Techniques Comparison For Face Classification on CCTV Images,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 14, no. 4, pp. 341–352, 2020, doi: 10.22146/ijccs.58092.

Y. A. Zebua et al., “Prediksi Penetapan Tarif Penerbangan Menggunakan Auto-Ml Dengan Algoritma Random Forest,” J. Tek. Inf. dan Komput., vol. 5, no. 1, pp. 115–122, 2022, doi: 10.37600/tekinkom.v5i1.508.

M. R. A. Yudianto, K. Kusrini, and H. Al Fatta, “Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolutional Neural Network,” J. Teknol. Inf., vol. 4, no. 2, pp. 182–191, 2020, doi: 10.36294/jurti.v4i2.1319.

R. Roslidar, M. R. Syahputra, R. Muharar, and F. Arnia, “Adaptasi Model CNN Terlatih pada Aplikasi Bergerak untuk Klasifikasi Citra Termal Payudara,” J. Rekayasa Elektr., vol. 18, no. 3, pp. 185–192, 2022, doi: 10.17529/jre.v18i3.8754.

Published
2023-08-18
How to Cite
[1]
Y. A. Usen and C. Hayat, “DESIGN AND BUILD VEHICLE PLATE DETECTION SYSTEM USING YOU ONLY LOOK ONCE METHOD BASED ON ANDROID”, J. Tek. Inform. (JUTIF), vol. 4, no. 4, pp. 807-818, Aug. 2023.