IMPROVING ONLINE MEETING EFFICIENCY USING LATENT DIRICHLET ALLOCATION (LDA) AND SOCIAL NETWORK ANALYSIS (SNA) METHODS
Abstract
The pandemic period can change the habits of a person and organization, where all meetings are not held face-to-face/offline but virtually, so it is not uncommon for meetings to be attended by employees who are not Persons in Charge (PIC) on certain meeting topics. This study aims to identify trends in time, day, and duration of meetings within the Secretariat General of the Ministry of Finance and to cluster meeting matters into several themes so that further identification can be carried out to provide recommendations for units having duties related to the meeting using networking analysis. This study uses the Natural Language Processing (NLP) method with Latent Dirichlet Allocation (LDA) which can conclude the factors that represent topics to produce topic clustering and Social Network Analysis (SNA) modeling using the Degree Centrality method to find out the closest relationship between topics and names. unit based on the highest centrality value and the possibility of a unit attending a meeting that discusses a particular topic. Data used in this reseacrh are meetings held during April 2020 up to April 2022 with 59,891 data records. The modeling results shows clustering result dashboard based on meeting topics and to produce an analysis of which meeting topics are often discussed and become a concern. The results of the research are expected to be used to provide recommendations to unit leaders to assign meeting dispositions for each PIC to attend the meeting.
Downloads
References
H. Pratama, M. N. A. Azman, G. K. Kassymova, and S. S. Duisenbayeva, “The Trend in Using Online Meeting Applications for Learning During the Period of Pandemic COVID-19 : A Literature Review,” J. Innov. Educ. Cult. Res., vol. 1, no. 2, pp. 58–68, 2020, doi: 10.46843/jiecr.v1i2.15.
K. A. Karl, J. V Peluchette, and N. Aghakhani, “Virtual Work Meetings During the COVID-19 Pandemic : The Good , Bad , and Ugly,” Small Gr. Res., vol. 53, no. 3, pp. 343–365, 2022, doi: 10.1177/10464964211015286.
K. R. Khurya and D. Prayoga, “Eye fatigue during pandemic covid-19: literatire review,” J. Ilm. Permas J. Ilm. STIKES Kendal, vol. 11, no. 4, pp. 515–524, 2021, [Online]. Available: http://journal.stikeskendal.ac.id/index.php/PSKM
J. Yang et al., “Brief introduction of medical database and data mining technology in big data era,” J. Evid. Based. Med., vol. 13, no. 1, pp. 57–69, 2020, doi: 10.1111/jebm.12373.
F. Martinez-Plumed et al., “CRISP-DM Twenty Years Later : From Data Mining Processes to Data Science Trajectories,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048–3061, 2021, doi: 10.1109/TKDE.2019.2962680.
A. Rahman, R. B. Waskitho, M. F. A. U. Nuha, and N. A. Rakhmawati, “Klasterisasi Topik Konten Channel Youtube Gaming Indonesia Menggunakan Latent Dirichlet Allocation,” J. Inf. Eng. Educ. Technol., vol. 05, no. 01, pp. 78–83, 2021.
D. Inayah and F. L. Purba, “Implementasi Social Network Analysis Dalam Penyebaran Informasi Virus Corona (Covid-19) di Twitter,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 292–299, 2020, doi: 10.34123/semnasoffstat.v2020i1.573.
J. W. Johnsen and K. Franke, “Identifying Proficient Cybercriminals Through Text and Network Analysis,” 2020 IEEE Int. Conf. Intell. Secur. Informatics, pp. 1–7, 2020, doi: 10.1109/ISI49825.2020.9280523.
C. Huang, Y. Guo, W. Guo, and Y. Li, “HackerRank : Identifying key hackers in underground forums,” Int. J. Distrib. Sens. Networks, vol. 17, no. 5, pp. 1–12, 2021, doi: 10.1177/15501477211015145.
R. Kumari, J. Y. Jeong, and B. Lee, “Topic modelling and social network analysis of publications and patents in humanoid robot technology,” J. Inf. Sci., vol. 47, no. 5, pp. 658–676, 2021, doi: 10.1177/0165551519887878.
Afolabi, I. T, and E. E. Israel, “SNA , LDA And Sentiment Analysis For Competitive Intelligence In Agro E-Commerce,” Int. J. Comput. Sci. Eng., vol. 11, no. 1, pp. 43–60, 2022.
J. Joung and H. M. Kim, “Automated Keyword Filtering in Latent Dirichlet Allocation for Identifying Product Attributes From Online Reviews,” J. Mech. Des., vol. 143, no. 8, pp. 1–6, 2021, doi: 10.1115/1.4048960.
C. Natalia, F. Suprata, F. P. S. Surbakti, and S. Clarence, “Penentuan Standar Spesifikasi Kerja di Café Berdasarkan Big Data dengan Metode LDA dan AHP,” J. Rekayasa Sist. Ind., vol. 10, no. 2, pp. 211–225, 2021, doi: 10.26593/jrsi.v10i2.5228.211-226 Jurnal.
N. S. ZD, D. Saepudin, and A. A. Rohmawati, “Prediksi Pergerakan Volatilitas Pasar Saham Berdasarkan Financial News,” e-Proceeding Eng., vol. 7, no. 1, pp. 2870–2880, 2020.
H. N. R. Achaqie, “Pemanfaatan Social Network Analysis ( SNA ) Untuk Analisis Pemetaan Komunikasi Pada Pegawai Bank Syariah di Jawa Tengah,” J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 2, no. 1, pp. 42–49, 2022.
T. Annisa, “10 Rapat yang Efektif dan Tips Mewujudkannya,” EKRUT Media, 2021. https://www.ekrut.com/media/6-tips-menciptakan-rapat-yang-efektif (accessed Nov. 08, 2022).
G. Fauville, M. Luo, A. C. M. Queiroz, J. N. Bailenson, and J. Hancock, “Zoom Exhaustion & Fatigue Scale,” Comput. Hum. Behav. Reports, vol. 4, 2021, doi: 10.1016/j.chbr.2021.100119.
Copyright (c) 2023 Megananda Hervita, Utomo Budiyanto
This work is licensed under a Creative Commons Attribution 4.0 International License.