LECTURERS ADMISSIONS SELECTIONS MODEL USING FUZZY K-NEAREST NEIGHBOR METHOD

  • Lely Meilina Program Studi Magister Teknik Elektro, Fakultas Teknik, Universitas Udayana, Indonesia
  • Nyoman Putra Sastra Program Studi Magister Teknik Elektro, Fakultas Teknik, Universitas Udayana, Indonesia
  • Dewa Made Wiharta Program Studi Magister Teknik Elektro, Fakultas Teknik, Universitas Udayana, Indonesia
Keywords: Data Classification, Decission Support System (DSS), Fuzzy K-Nearest Neighbor (FK-NN)

Abstract

Higher Education, or tertiary education, is the final stage which is optional in formal education. It is usually organized in the form of a university, academy, seminary, high school, or institute. Every tertiary institution needs qualified and professional educators because they have an important role in the process of implementing the Tri Dharma of Higher Education. Recruitment for teaching staff usually has several stages and standardization of assessment in selection proces. In order for the process of selecting educators to be carried out objectively, a support system is need to carry out the assessment process. This study applies the Fuzzy K-Nearest Neighbor (FK-NN) method for the classification process in determining prospective educators who pass or not. Data classification is a new data or object grouping into classes or labels based on certain attributes. The application of the FK-NN method has several stages, namely weighting the criteria, then calculating the closeness of the test data and training data, finding the value of k-nearest neighbors between the training data and testing data and determining the membership of each data. Tests were carried out using the Confusion matrix method on several variations of the k value where the highest percentage was obtained from the value of k = 5. The test results for all k values obtained an average accuracy rate of 89.22%, 89.22% precision and 82.45% recall with 114 training data and 50 test data. Based on the average value of the test results, it can be concluded that the FK-NN method is feasible and good to use for the selection of educators with the classification of pass or not.

Downloads

Download data is not yet available.

References

N. Lestari, J. Karman, and B. Santoso, “Komparasi Metode Weighted Aggregated Sum Product Assessment (WASPAS) dan Multi-Objective Optimization on The Basis of Ratio (MOORA) Dalam Penerimaan Dosen,” 2021.

M. Sadikin, R. Rosnelly, and T. Surya Gunawan, “Perbandingan Tingkat Akurasi Klasifikasi Penerimaan Dosen Tetap Menggunakan Metode Naive Bayes Classifier dan C4.5,” JURNAL MEDIA INFORMATIKA BUDIDARMA , vol. 4, pp. 1100–1109, 2020, doi: 10.30865/mib.v4i4.2434.

Kharisma Lalu Puji Indra, “Sistem Pendukung Keputusan untuk Seleksi Penerimaan Dosen menggunakan Metode AHP dan SAW,” JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 2, pp. 160–165, 2019.

A. Pradana and E. Bu’ulolo, “Sistem Pendukung Keputusan Dalam Menilai Kinerja Tenaga Pendidikan Terbaik Menggunakan Metode WASPAS,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 5, no. 1, 2021, doi: 10.30865/komik.v5i1.3666.

O. S. K. Bancin, “Sistem Pendukung Keputusan Pemilihan Kinerja Karyawan Terbaik Menggunakan Metode Simple Additive Weight,” Jurnal Teknik, Komputer, Agroteknologi Dan Sains, vol. 1, no. 1, pp. 1–9, May 2022, doi: 10.56248/marostek.v1i1.7.

W. G. Akbari, N. Hidayat, and N. Santoso, “Diagnosis Penyakit Cabai Menggunakan Metode Fuzzy K-Nearest Neighbor (FKNN),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 1, pp. 1070–1074, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

J. Andromeda, N. Hidayat, and R. K. Dewi, “Implementasi Metode FKNN (Fuzzy K-Nearest Neighbor) Untuk Diagnosis Penyakit Tanaman Kentang,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 12, pp. 10900–10905, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

N. A. Kartini, F. A. Bachtiar, and Indriati, “Klasifikasi Rating Berdasarkan Komentar Tempat Wisata Di Media Sosial Dengan Menggunakan Metode Fuzzy K-Nearest Neighbor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 5, pp. 4164–4169, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

N. I. R. Amalia and J. Yusmah Sari, “Mengidentifikasi Mood Mahasiswa Berdasarkan Ekspresi Wajah dengan Menggunakan Discrete Wavelet Transform dan Fuzzy K-Nearest Neighbor,” ULTIMA Computing, vol. XI, no. 1, 2019.

A. Riadin, M. Jailani, and U. Qudsiyah, “OPTIMALISASI KOMPETENSI DAN KINERJA GURU EKONOMI DALAM PEMBELAJARAN DARING PADA MASA PANDEMIC BERBASIS ICT,” JMM (Jurnal Masyarakat Mandiri), vol. 4, no. 6, pp. 1219–1261, 2020, doi: 10.31764/jmm.v4i6.3119.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung, JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 2, p. 437, Apr. 2020, doi: 10.30865/mib.v4i2.2080.

A. P. S. Iskandar, K. Arionadi Shobirin, and K. Oka Saputra, “Analysis of Shopping Cart At Drugs Store By Using An Apriori Algorithm,” International Journal of Engineering and Emerging Technology, vol. 2, no. 1, 2017.

D. Fadma Ristianti, “Komparasi Algoritma Klasifikasi pada Data Mining,” PROCEEDINGS OF THE 1 st STEEEM, vol. 1, no. 1, pp. 148–156, 2019.

S. Kusumadewi, Artificial Intelligence (Teknik & Aplikasinya). Yogyakarta: Graha Ilmu, 2003.

D. N. Aini, B. Oktavianti, M. J. Husain, D. A. Sabillah, and T. Rizaldi, “Seleksi Fitur untuk Prediksi Hasil Produksi Agrikultur pada Algoritma K-Nearest Neighbor (KNN),” Jurnal Sistem Komputer dan Informatika (JSON) Hal: 140−, vol. 145, no. 1, 2022, doi: 10.30865/json.v4i1.4813.

M. Diki Hendriyanto and N. Sari, “Penerapan Algoritma K-Nearest Neighbor Penerapan Algoritma K-Nearest Neighbor dalam Klasifikasi Judul Berita Hoax,” Jurnal Ilmiah Informatika (JIF), vol. 10, no. 2, 2022.

A. T. Putri, M. Tanzil Furqon, and R. C. Wihandika, “Klasifikasi Standar Produk Baja PT. Krakatau Steel (Persero) Tbk. Berdasarkan Komposisi Kimia dan Sifat Mekanis Baja Menggunakan Fuzzy K-Nearest Neighbor (Fuzzy K-NN),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 1, pp. 184–189, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

A. N. Yuliarina, “COMPARISON OF PREDICTION ANALYSIS OF GOFOOD SERVICE USERS USING THE KNN & NAIVE BAYES ALGORITHM WITH RAPIDMINER SOFTWARE,” Jurnal Teknik Informatika (JUTIF), vol. 3, pp. 847–856, 2022, doi: 10.20884/1.jutif.2022.3.4.294.

H. P. Lestari, S. Wahyuningsih, F. Deny, and T. Amijaya, “Prediksi Klasifikasi Royalti Batubara Menggunakan Algoritma Fuzzy K-Nearest Neighbor (Studi Kasus: CV.Fazar Utama),” Jurnal EKSPONENSIAL, vol. 10, no. 1, 2019.

I. Ahmad, H. Sulistiyani, H. Saputra, S. Informasi, and F. T. Dan, “Using Fuzzy K-Nearest Neighbor for Predicting University Students Graduation In Teknokrat,” Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol. 1, no. 1, pp. 47–52, 2018.

D. Chintya and B. Darma Setiawan, “Klasifikasi Risiko Hipertensi menggunakan Fuzzy K-Nearest Neighbor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10813–10819, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

Published
2023-03-23
How to Cite
[1]
L. Meilina, N. P. Sastra, and D. M. Wiharta, “LECTURERS ADMISSIONS SELECTIONS MODEL USING FUZZY K-NEAREST NEIGHBOR METHOD ”, J. Tek. Inform. (JUTIF), vol. 4, no. 2, pp. 449-456, Mar. 2023.