MATURITY CLASSIFICATION SYSTEM OF TOMATO BASED ON RGB COLOR FEATURES USING BACKPROPAGATION ARTIFICIAL NEURAL NETWORK METHOD
Abstract
Determining the ripeness level of tomatoes, for now, is still done manually (conventional), and in general, determining the ripeness of tomatoes using the manual method often gets inconsistent results due to differences in everyone's perception so in determining ripe or not ripe tomatoes to be not very accurate. There have been various previous studies that have been conducted, especially in terms of classifying maturity levels, but from these studies, the level of accuracy achieved is relatively low. Therefore, the researcher proposes research on Tomato Fruit Maturity Classification System Based on RGB Color Features Using the Backpropagation Neural Network Method. This research consists of the image acquisition stage, the preprocessing stage, the image segmentation stage including performing morphological operations, the RGB feature extraction stage, and the last stage is conducting Image Classification using Backpropagation Neural Networks. From the results of the training phase, the resulting computational time is 87,735 seconds with an overall accuracy rate of 99.04%. And based on the results of the testing phase, the architecture of the backpropagation neural network that has been built can accurately classify the ripeness level of tomatoes, from a total of 90 test images, with an accuracy of 98.88% obtained and a more efficient computational time of 30.390 seconds. This can help farmers in harvesting tomatoes.
Downloads
References
M. A. Anggriawan, M. Ichwan, and D. B. Utami, “Pengenalan Tingkat Kematangan Tomat Berdasarkan Citra Warna Pada Studi Kasus Pembangunan Sistem Pemilihan Otomatis,” J. Tek. Inform. dan Sist. Inf., vol. 3, no. 3, pp. 550–564, 2017, doi: 10.28932/jutisi.v3i3.688.
B. Studi, K. Di, and K. Bengkulu, “Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode,” vol. 12, no. 1, pp. 61–69, 2016.
Z. E. Fitri, R. Rizkiyah, A. Madjid, and A. M. N. Imron, “Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat,” J. Rekayasa Elektr., vol. 16, no. 1, pp. 44–49, 2020, doi: 10.17529/jre.v16i1.15535.
V. Ulshqhvv et al., .“Odvl¿Ndvl 8Qwxn 0Hqhqwxndq 7Lqjndw .Hpdwdqjdq %Xdk 3Lvdqj 6Xqsulgh,” 2016.
N. Nafiah, “Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN,” J. Elektron. List. dan Teknol. Inf. Terap., vol. 1, no. 2, pp. 1–4, 2019, [Online]. Available: https://ojs.politeknikjambi.ac.id/elti
E. D. Putra, “Identifikasi Kematangan Cabai Menggunakan Operasi Morfologi ( Opening dan Closing ) dan Metode Backpropagation,” vol. 10, pp. 96–105, 2021.
A. Lustini and A. Primanita, “Klasifikasi Tingkat Kematangan Buah Nanas Menggunakan Ruang Warna Red – Green – Blue Dan Hue – Saturation – Intensity The Classification Of Pineapple ’ S Level Of Ripeness Using Colour Space Red - Green - Blue And Hue - Saturation –,” vol. 2, pp. 1–8, 2019.
M. L. A. R. I. Yatim, J. Y. Sari, and I. P. Ningrum, “Deteksi Area Wajah Manusia Pada Citra Berwarna Berbasis Segmentasi Warna YCbCr dan Operasi Morfologi Citra,” Ultim. J. Tek. Inform., vol. 11, no. 1, pp. 1–5, 2019, doi: 10.31937/ti.v11i1.1029.
C. Paramita, E. Hari Rachmawanto, C. Atika Sari, and D. R. Ignatius Moses Setiadi, “Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 1–6, Jan. 2019, doi: 10.30591/jpit.v4i1.1267.
S. Kusumaningtyas and R. A. Asmara, “Identifikasi Kematangan Buah Tomat Berdasarkan Warna Menggunakan Metode Jaringan Syaraf Tiruan (Jst),” J. Inform. Polinema, vol. 2, no. 2, p. 72, 2016, doi: 10.33795/jip.v2i2.59.
D. T. Panjaitan, “Perbandingan Thresholding Metode Otsu dengan Thresholding dengan Perataan Histogram untuk Menghasilkan Citra Biner Berinformasi Tinggi,” 2019.
W. MAharanni, “ISSN : 1979-2328,” Klasifikasi Data menggunakan JST Backpropagation Momentum dengan Adapt. Learn. rate, vol. 4, no. 1, pp. 88–100.
F. Ayu, “Implementasi Jaringan Saraf Tiruan Untuk Menentukan Kelayakan Proposal Tugas Akhir,” It J. Res. Dev., vol. 3, no. 2, pp. 44–53, 2019, doi: 10.25299/itjrd.2019.vol3(2).2271.
F. Izhari, M. Zarlis, and Sutarman, “Analysis of backpropagation neural neural network algorithm on student ability based cognitive aspects,” IOP Conf. Ser. Mater. Sci. Eng., vol. 725, no. 1, pp. 243–252, 2020, doi: 10.1088/1757-899X/725/1/012103.
C. Imam, E. W. Hidayat, and N. I. Kurniati, “Classification of Meat Imagery Using Artificial Neural Network Method and Texture Feature Extraction By Gray Level Co-Occurrence Matrix Method,” J. Tek. Inform., vol. 2, no. 1, pp. 1–8, 2021, doi: 10.20884/1.jutif.2021.2.1.37.
Copyright (c) 2024 Gary Jeremi Massie, Azir Zuldani Pratama, Tiara Putri Sakira, Andi Baso Kaswar, Dyah Darma Andayani
This work is licensed under a Creative Commons Attribution 4.0 International License.