• Dhani Ratna Sari Digital Business, Institut Teknologi dan Bisnis Muhammadiyah Purbalingga, Indonesia
  • Bayun Matsaany Actuarial, Institut Teknologi dan Bisnis Muhammadiyah Purbalingga, Indonesia
  • Muhammad Hamka Informatics Engineering, Fakultas Teknik dan Sains, Universitas Muhammadiyah Purwokerto, Indonesia
Keywords: cosine similarity, aspect extraction, gold standard wordnet, natural language processing, pos tagging


Aspect extraction is an essential element in Aspect-Based Sentiment Analysis (ABSA). Errors in determining aspects of ABSA will result in errors in determining the sentiment of an opinion and the accuracy value of ABSA. This study aims to obtain elements of opinion sentences on using e-commerce applications and marketplaces in Indonesia. Corrections of the statement were sourced from social media Twitter with the keywords "e-commerce" and "marketplace" from August 2020 to January 2022, and a total of 54,244 comments were obtained. Determination of the words that are candidate aspects is selected using POS Tagging for classes of noun singular (NN), noun plural (NNS), proper noun singular (NNP), and proper noun plural (NNPS).


Download data is not yet available.


We Are Social, “Digital 2022 Indonesia, February 2022,” We Are Social, New York, 2022.

Badan Pusat Statistik, “Analisis Hasil Survei Dampak COVID-19 terhadap Pelaku usaha,” 2020.

F. Xu, Z. Pan, and R. Xia, “E-commerce product review sentiment classification based on a naïve Bayes continuous learning framework,” Inf. Process. Manag., vol. 57, no. 5, p. 102221, 2020, doi: 10.1016/j.ipm.2020.102221.

A. E. E. Sobaih, I. A. Palla, and A. Baquee, “Social Media Use in E-Learning amid COVID 19 Pandemic: Indian Students’ Perspective,” Int. J. Environ. Res. Public Health, vol. 19, no. 9, pp. 1–12, 2022, doi: 10.3390/ijerph19095380.

J. Mou and M. Benyoucef, “Consumer behavior in social commerce: Results from a meta-analysis,” Technol. Forecast. Soc. Change, vol. 167, no. March, p. 120734, 2021, doi: 10.1016/j.techfore.2021.120734.

APJII, “Profil Internet Indonesia 2022,” 2022.

C. Zachlod, O. Samuel, A. Ochsner, and S. Werthmüller, “Analytics of social media data – State of characteristics and application,” J. Bus. Res., vol. 144, no. January, pp. 1064–1076, 2022, doi: 10.1016/j.jbusres.2022.02.016.

B. Ozyurt and M. A. Akcayol, “A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA,” Expert Syst. Appl., vol. 168, no. November 2020, p. 114231, 2021, doi: 10.1016/j.eswa.2020.114231.

Ł. Augustyniak, T. Kajdanowicz, and P. Kazienko, “Comprehensive analysis of aspect term extraction methods using various text embeddings,” Comput. Speech Lang., vol. 69, 2021, doi: 10.1016/j.csl.2021.101217.

Q. Liu, J. Wang, D. Zhang, Y. Yang, and N. Wang, “Text features extraction based on tf-idf associating semantic,” in 2018 IEEE 4th International Conference on Computer and Communications, ICCC 2018, 2018, pp. 2338–2343, doi: 10.1109/CompComm.2018.8780663.

N. Passalis and A. Tefas, “Learning bag-of-embedded-words representations for textual information retrieval,” Pattern Recognit., vol. 81, pp. 254–267, 2018, doi: 10.1016/j.patcog.2018.04.008.

D. Yan, K. Li, S. Gu, and L. Yang, “Network-Based Bag-of-Words Model for Text Classification,” IEEE Access, vol. 8, pp. 82641–82652, 2020, doi: 10.1109/ACCESS.2020.2991074.

M. Hamka, N. Alfatari, and D. R. Sari, “Analisis Sentimen Produk Kecantikan Jenis Serum Menggunakan Algoritma Naïve Bayes Classifier,” J. Sist. Komput. dan Inform., vol. 4, no. September, pp. 64–71, 2022, doi: 10.30865/json.v4i1.4740.

B. Bansal and S. Srivastava, “Sentiment classification of online consumer reviews using word vector representations,” Procedia Comput. Sci., vol. 132, pp. 1147–1153, 2018, doi: 10.1016/j.procs.2018.05.029.

V. K. Ayyadevara, Pro Machine Learning Algorithms. Hyderabad: Apress, 2018.

I. Yunanto and S. Yulianto, “Twitter Sentiment Analysis Pedulilindungi Application Using Naïve Bayes and Support Vector Machine Analisis Sentimen Twitter Aplikasi Pedulilindungi,” J. Tek. Inform., vol. 3, no. 4, pp. 807–814, 2022, doi: 10.20884/1.jutif.2022.3.4.292.

R. Cahyadi, A. Damayanti, and D. Aryadani, “Recurrent Neural Network (RNN) dengan Long Short Term Memory (LSTM) untuk Analisis Sentimen data instagram,” J. Inform. dan Komput., vol. 5, no. 1, pp. 1–9, 2020, doi: 10.26798/jiko.v5i1.407.

Y. N. Prasetya, D. Winarso, and Syahril, “Penerapan Lexicon Based Untuk Analisis Sentimen Pada Twiter Terhadap Isu Covid-19,” FASILKOM, vol. 11, no. 2, pp. 97–103, 2021.

E. Cambria, Q. Liu, S. Decherchi, F. Xing, and K. Kwok, “SenticNet 7: A Commonsense-based Neurosymbolic AI Framework for Explainable Sentiment Analysis,” in Proceedings of the Language Resources and Evaluation Conference, 2022, no. June, pp. 3829–3839.

E. W. Pamungkas and D. G. P. Putri, “An experimental study of lexicon-based sentiment analysis on Bahasa Indonesia,” in Proceedings - 2016 6th International Annual Engineering Seminar, InAES 2016, 2017, pp. 28–31, doi: 10.1109/INAES.2016.7821901.

L. Vu and T. Le, “A lexicon-based method for Sentiment Analysis using social network data,” in Int’l Conf. Information and Knowledge Engineering, 2017, no. September, pp. 10–16.

W. Yulita, E. D. Nugroho, and M. H. Algifari, “Analisis Sentimen Terhadap Opini Masyarakat Tentang Vaksin Covid - 19 Menggunakan Algoritma Naïve Bayes Classifier,” JDMSI, vol. 2, no. 2, pp. 1–9, 2021.

L. N. T. Manalu, M. A. Bijaksana, and A. A. Suryani, “Analysis of the Word2Vec model for semantic similarities in Indonesian words,” 2019 7th Int. Conf. Inf. Commun. Technol. ICoICT 2019, 2019, doi: 10.1109/ICoICT.2019.8835330.

D. Jatnika, M. A. Bijaksana, and A. A. Suryani, “Word2vec model analysis for semantic similarities in English words,” Procedia Comput. Sci., vol. 157, pp. 160–167, 2019, doi: 10.1016/j.procs.2019.08.153.

A. Elekes, M. Schaeler, and K. Boehm, “On the Various Semantics of Similarity in Word Embedding Models,” Proc. ACM/IEEE Jt. Conf. Digit. Libr., 2017, doi: 10.1109/JCDL.2017.7991568.

J. Z. Maitama, N. Idris, A. Abdi, L. Shuib, and R. Fauzi, “A systematic review on implicit and explicit aspect extraction in sentiment analysis,” IEEE Access, vol. 8, pp. 194166–194191, 2020, doi: 10.1109/ACCESS.2020.3031217.

P. Michelle, F. Z. Ruskanda, and A. Purwarianti, “Development of Domain-Specific Lexicon for Aspect-Based Sentiment Analysis,” 2020 7th Int. Conf. Adv. Informatics Concepts, Theory Appl. ICAICTA 2020, 2020, doi: 10.1109/ICAICTA49861.2020.9429059.

D. Suleiman and A. A. Awajan, “Using part of speech tagging for improving word2vec model,” 2019 2nd Int. Conf. New Trends Comput. Sci. ICTCS 2019 - Proc., 2019, doi: 10.1109/ICTCS.2019.8923081.

A. S. Shafie, N. M. Sharef, M. A. A. Murad, and A. Azman, “Aspect Extraction Performance with POS Tag Pattern of Dependency Relation in Aspect-based Sentiment Analysis,” Proc. - 2018 4th Int. Conf. Inf. Retr. Knowl. Manag. Diving into Data Sci. CAMP 2018, pp. 107–112, 2018, doi: 10.1109/INFRKM.2018.8464692.

How to Cite
D. R. Sari, B. Matsaany, and M. Hamka, “ASPECT EXTRACTION OF E-COMMERCE AND MARKETPLACE APPLICATIONS USING WORD2VEC AND WORDNET PATH”, J. Tek. Inform. (JUTIF), vol. 4, no. 4, pp. 787-796, Aug. 2023.