HYBRIDIZATION OF THE NAIVE BAYES CLASSIFICATION METHOD IN THE FRESHWATER FISH SEED SELLER CLASSIFICATION MODEL

  • M Hafidz Ariansyah Departemen Sistem Informasi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Esmi Nur Fitri Departemen Sistem Informasi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Sri Winarno Departemen Sistem Informasi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Asih Rohmani Departemen Sistem Informasi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Fikri Budiman Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Junta Zeniarja Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
  • Edi Sugiarto Departemen Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Indonesia
Keywords: Classification, Fish Farming, Fish Seed Seller, Hybrid Naive Bayes Classifiers, Machine Learning

Abstract

Freshwater fish seed sellers play several roles in the supply chain process in the freshwater fish farming business. The role of the seller of freshwater fish seeds in this process is to distribute fish seeds which are one of the upstream sources in the supply chain process. Freshwater fish cultivators must select competent freshwater fish seed sellers so the supply chain process can run well. A large number of freshwater fish seed sellers in the market remind freshwater fish cultivators to choose the quality of the freshwater fish seed seller in terms of seed quality, low prices, shipping that can reach many areas, ergonomic packaging, and others. This study proposes Hybrid Naïve Bayes Classifiers (HNBCs) as a machine learning method for classification. This study aimed to compare the seed seller classification method in which the appropriate pattern of seed seller was identified by hybridization of Naïve Bayes Classifiers (NBCs), and then the researchers conducted performance appraisal and evaluation. The results are beneficial for freshwater fish cultivators and researchers which will enable them to formulate their plans according to the predicted results. The proposed method has produced significant results by achieving a training data accuracy of 82.61% and the testing data accuracy of 73.91%.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik, “Pencarian Produksi Ikan Dengan Perbandingan Tahun”, 2022. https://statistik.kkp.go.id/home.php?m=total&i=2#panel-footer [accessed Oct. 2, 2022].

L. Lukmandono, M. Basuki, M. J. Hidayat, V. Setyawan, "Pemilihan Supplier Industri Manufaktur Dengan Pendekatan AHP dan TOPSIS," OPSI, vol. 12, no. 2, pp. 83-88, 2019, DOI : https://doi.org/10.31315/opsi.v12i2.3146.

V. B. Schramm, L. P. B. Cabral, F. Schramm, "Approaches for supporting sustainable supplier selection-A literature review," Journal of cleaner production, vol. 273, pp. 123089, 2020, DOI : https://doi.org/10.1016/j.jclepro.2020.123089

A. Balango, S. Risnanto, P. Mauliana, W. Wigun, "Aplikasi Seleksi Pemasok Konstruksi Menggunakan Metode Weighted Product Berbasis Mobile Di PT Binarthama Kharisma," Infotronik: Jurnal Teknologi Informasi dan Elektronika, vol. 5, no. 1, pp. 1-10, 2020, DOI : https://doi.org/10.32897/infotronik.2020.5.1.34, DOI : https://doi.org/10.32897/infotronik.2020.5.1.354

A. Tharwat, "Classification assessment methods," Applied Computing and Informatics, 2020, DOI : https://doi.org/10.1016/j.aci.2018.08.003.

A. H. Nasrullah, "Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris," Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, vol. 7, no. 2, pp. 45-51, 2021, DOI : https://doi.org/10.35329/jiik.v7i2.203

E. A. Sambudi, "Analisa Pemilihan Supplier dengan Metode Analytic Hierarchy Process: Kasus Perusahaan Otomotif di Sunter," Jurnal Operations Excellence: Journal of Applied Industrial Engineering, vol. 11, no. 3, pp. 322-329, 2019, DOI : 10.22441/oe.v11.3.2019.040

G. W. Dickson, "An analysis of vendor selection systems and decisions," Journal of purchasing, vol. 2, no. 1, pp. 5-17, 1966, DOI : https://doi.org/10.1111/j.1745-493X.1966.tb00818.x

J. W.Gullifer, and D. Titone, "Engaging proactive control: Influences of diverse language experiences using insights from machine learning", Journal of Experimental Psychology: General, vol.150, no.3, pp. 414, 2021, DOI : https://doi.org/10.1037/xge0000933.

S. García, J. Luengo, F. Herrera, "Data preprocessing in data mining," Cham, Switzerland: Springer International Publishing, vol. 72, pp. 59-139, 2015.

R. A. R. Mahmood, A. Abdi, M. Hussin, "Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers," Majallat Baghdād Lil-ʻulūm, vol. 18, no.2, pp. 884, 2021, DOI : https://doi.org/10.21123/bsj.2021.18.2(Suppl.).0884

Z. M. Mosa, N. H. Ghaeb, A. H. Ali, "Detecting keratoconus by using SVM and decision tree classifiers with the aid of image processing," Baghdad Science Journal, vol. 16, no. 4, 2019, DOI : https://doi.org/10.21123/bsj.2019.16.4(Suppl.).1022

W. Jia, Y. Tan, L. Liu, J. Li, H. Zhang, K. Zhao, "Hierarchical prediction based on two-level Gaussian mixture model clustering for bike-sharing system," Knowledge-Based Systems, vol. 178, pp. 84-97, 2019, DOI : https://doi.org/10.1016/j.knosys.2019.04.020

E. Patel, D. S. Kushwaha, "Clustering cloud workloads: K-means vs gaussian mixture model," Procedia computer science, vol. 171, pp. 158-167, 2020, DOI : https://doi.org/10.1016/j.procs.2020.04.017

G. A. A. J. Alkubaisi, S. S. Kamaruddin, H. Husni. "Stock Market Classification Model Using Sentiment Analysis on Twitter Based on Hybrid Naive Bayes Classifiers,", Comput. Inf. Sci., vol.11, no.1, pp.52-64, 2018.

M. Rashid, A. Hamid, S. A. Parah, "Analysis of streaming data using big data and hybrid machine learning approach," In Handbook of Multimedia Information Security: Techniques and Applications, pp. 629-643, 2019, DOI : 10.1007/978-3-030-15887-3_30

J. Li, Z. Li, C. Wen, Q. Peng, P. Huang, "Train operation conflict detection for high-speed railways: a Naïve Bayes approach," International Journal of Rail Transportation, pp. 1-19, 2022, DOI : https://doi.org/10.1080/23248378.2022.2071346

V. R. Balaji, S. T. Suganthi, R. Rajadevi, V. K. Kumar, B. S. Balaji, S. Pandiyan, "Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes Classifier," Measurement, vol. 163, pp. 107922, 2020, DOI : https://doi.org/10.1016/j.measurement.2020.107922

E. P. Cynthia, E. Ismanto, "Metode Decision Tree Algoritma C. 45 Dalam Mengklasifikasi Data Penjualan Bisnis Gerai Makanan Cepat Saji," Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika), vol. 3, pp. 1-13, 2018.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, W. Gata, "Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi," Jurnal Teknoinfo, vol. 14, no. 2, pp. 115-123, 2020, DOI: https://doi.org/10.33365/jti.v14i2.679

J. Xu, Y. Zhang, D. Miao, "Three-way confusion matrix for classification: A measure driven view" Information sciences, vol. 507, pp. 772-794, 2020, DOI : https://doi.org/10.1016/j.ins.2019.06.064

Charles D. O. Godinez, L. S. Lomibao, "A Gaussian-Bernoulli Mixed Naïve Bayes Approach to Predict Students’ Academic Procrastination Tendencies in Online Mathematics Learning," American Journal of Educational Research, vol. 10, no. 4, pp. 223-232, 2022, DOI : 10.12691/education-10-4-10

Published
2023-03-23
How to Cite
[1]
M. H. Ariansyah, “HYBRIDIZATION OF THE NAIVE BAYES CLASSIFICATION METHOD IN THE FRESHWATER FISH SEED SELLER CLASSIFICATION MODEL”, J. Tek. Inform. (JUTIF), vol. 4, no. 2, pp. 421-427, Mar. 2023.