INDIVIDUAL IDENTIFICATION SYSTEM DESIGN THROUGH VOICE USING LINEAR PREDICTIVE CODING METHOD AND K-NEAREST NEIGHBOR

  • Davita Nadia Fadhilah Telecommunication Engineering, Electrical Engineering Faculty, Telkom University, Indonesia
  • Rita Magdalena Telecommunication Engineering, Electrical Engineering Faculty, Telkom University, Indonesia
  • Sofia Sa’idah Telecommunication Engineering, Electrical Engineering Faculty, Telkom University, Indonesia
Keywords: K-Nearest Neighbor, Linear Predictive Coding, Speech Recognition

Abstract

Humans have a variety of characteristics that are different from one another. Characteristics possessed by humans are genuine which can be used as a differentiator between one individual and another, one of which is sound. Voice recognition is called speech recognition. In this study, it was developed as an individual voice recognition system using a combination of the Linear Predictive Coding (LPC) method of feature extraction and K-Nearest Neighbor (K-NN) classification in the speech recognition process. Testing is done by testing changes in several parameters, namely the LPC order value, the number of frames, the K value, and different distance methods. The results of the parameter combination test showed a fairly good presentation of 73.56321839% with the combination parameter or LPC 8, the number of frames 480, the value of K 5, with the distance method used by Chebychev.

Downloads

Download data is not yet available.

References

K. Anam, “Pengenalan suara manusia menggunakan metode LPC,” 2013.

“SPEECH RECOGNITION – MTI.” [Online]. Available: https://mti.binus.ac.id/2019/05/08/speech-recognition/. [Accessed: 10-Feb-2020].

R. R. Juniansyah, “PERANCANGAN SISTEM PENGENALAN SUARA DENGAN METODE LINEAR PREDICTIVE CODING,” e-Proceeding Eng., vol. 4, no. 1, pp. 404–411, 2017.

A. Anggoro, S. Herdjunanto, and R. Hidayat, “MFCC dan KNN untuk Pengenalan Suara Artikulasi P,” Avitec, vol. 2, no. 1, pp. 13–19, 2020, doi: 10.28989/avitec.v2i1.605.

Ranny, “Voice recognition using k nearest neighbor and double distance method,” ICIMSA 2016 - 2016 3rd Int. Conf. Ind. Eng. Manag. Sci. Appl., 2016, doi: 10.1109/ICIMSA.2016.7504045.

H. Saputra, “Sistem Pengenalan Kata dengan Menggunakan Linear Predictive Coding dan Nearest Neighbor Classifier,” J. Tek. Elektro Univ. Kristen Petra, vol. 5, no. 1, pp. 19–24, 2005, doi: 10.9744/jte.5.1.

W. S. Mada Sanjaya, D. Anggraeni, and I. P. Santika, “Speech Recognition using Linear Predictive Coding (LPC) and Adaptive Neuro-Fuzzy (ANFIS) to Control 5 DoF Arm Robot,” J. Phys. Conf. Ser., vol. 1090, no. 1, 2018, doi: 10.1088/1742-6596/1090/1/012046.

A. Bode, “K-Nearest Neighbor Dengan Feature Selection Menggunakan Backward Elimination Untuk Prediksi Harga Komoditi Kopi Arabika,” Ilk. J. Ilm., vol. 9, no. 2, pp. 188–195, 2017, doi: 10.33096/ilkom.v9i2.139.188-195.

L. Rabiner and B. Juang, “Fundamentals of speech recognition,” Robust Automatic Speech Recognition. pp. 9–40, 2016, doi: 10.1016/b978-0-12-802398-3.00002-7.

M. Yassir, “Penerapan Metode Algoritma Genetika Dalam Pengenalan Pola Sinyal Suara Manusia,” Inspiration, vol. 2, pp. 28–35, 2012.

M. Walid and A. K. Darmawan, “Pengenalan Ucapan Menggunakan Metode Linear Predictive Coding ( LPC ) dan K-Nearest Neighbor (KNN),” Energy, Univ. Panca Marga, vol. 7, no. 1, pp. 13–22, 2017.

Thiang and H. Saputra, “Sistem Pengenalan Kata dengan Menggunakan Linear Predictive Coding dan Nearest Neighbor Classifier,” 2005.

S. Rachman, “Visualisasi pengenalan ucapan vokal bahasa indonesia dengan metode lpc-dtw,” 2011.

A. Y. P. Idwal, Y. I. Nurhasanah, and D. B. Utami, “Sistem Pengenalan Suara Bahasa Indonesia Untuk Mengenali Aksen Daerah,” J. Tek. Inform. dan Sist. Inf., vol. 3, no. 3, pp. 461–471, 2017, doi: 10.28932/jutisi.v3i3.661.

P. R. Sihombing and A. M. Arsani, “COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018 PERBANDINGAN METODE MACHINE LEARNING DALAM KLASIFIKASI KEMISKINAN DI INDONESIA TAHUN 2018,” J. Tek. Inform., vol. 2, no. 1, pp. 51–56, 2021.

A. Rohman, “MODEL ALGORITMA K-NEAREST NEIGHBOR (K-NN) UNTUK PREDIKSI KELULUSAN MAHASISWA,” J. Ilm. Teknol., vol. 1, p. 236 hal, 2015.

Published
2021-03-28
How to Cite
[1]
D. N. Fadhilah, R. Magdalena, and S. Sa’idah, “INDIVIDUAL IDENTIFICATION SYSTEM DESIGN THROUGH VOICE USING LINEAR PREDICTIVE CODING METHOD AND K-NEAREST NEIGHBOR”, J. Tek. Inform. (JUTIF), vol. 2, no. 2, pp. 95-100, Mar. 2021.