IMPLEMENTATION OF CLUSTERING ON TWEET UPLOADING SIDE EFFECTS OF COVID-19 POST VACCINATION USING K-MEANS ALGORITHM

  • Santi Information Systems Study Program, Faculty of Information Technology and Industry, Universitas Stikubank Semarang, Indonesia
  • Herny Februariyanti Information Systems Study Program, Faculty of Information Technology and Industry, Universitas Stikubank Semarang, Indonesia
Keywords: Clustering, Covid-19 Vaccination Effects, K-Means, Text Mining, Twitter

Abstract

The Covid-19 Vaccination Program has become pros and cons among Indonesian people including Twitter social media users. When the program was running, Twitter users started uploading tweets regarding the side effects that occurred, ranging from mild to severe, both scientifically proven. or not. Of all uploaded tweets, by applying text mining, only tweets containing the queries "vaccine effect" and "post vaccine" in the period from January to June 2022 and Indonesian language tweets will be used and based on these parameters a total of 4800 tweets have been collected, of the total These tweets will be further processed using the clustering method, the k-means algorithm and the silhouette coefficient. The results of implementing the silhouette coefficient show that the best cluster is in cluster 2 with a score of 0.6228720387313319 and the results of the clustering algorithm k-means for 4800 tweets obtained 3917 members in cluster 0, and 883 members in cluster 1 placement. The feature is that cluster 0 contains tweets that state program effects explicitly or explicitly, while cluster 1 states program effects that arise implicitly.

Downloads

Download data is not yet available.

References

S. Baloch, M. A. Baloch, T. Zheng, and X. Pei, “The coronavirus disease 2019 (COVID-19) pandemic,” Tohoku J. Exp. Med., vol. 250, no. 4, pp. 271–278, 2020.

F. F. Nur and V. N. Rahman, “Penyuluhan Program Vaksinasi Covid-19 Pada Mayarakat Desa Pakistaji,” Budimas J. Pengabdi. Masy., vol. 3, no. 2, 2021.

N. P. Astuti, E. G. Z. Nugroho, J. C. Lattu, I. R. Potempu, and D. A. Swandana, “Persepsi masyarakat terhadap penerimaan vaksinasi COVID-19: Literature review,” J. Keperawatan, vol. 13, no. 3, pp. 569–580, 2021.

D. S. Indraloka and B. Santosa, “Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia,” J. Sains dan Seni ITS, vol. 6, no. 2, pp. A51–A56, 2017.

H. Irsyad and M. R. Pribadi, “IMPLEMENTASI TEXT MINING DALAM PENGELOMPOKAN DATA TWEET PERTANIAN INDONESIA DENGAN K-MEANS,” Kurawal-Jurnal Teknol. Inf. dan Ind., vol. 3, no. 2, pp. 164–172, 2020.

S. M. Fani, R. Santoso, and S. Suparti, “Penerapan Text Mining untuk Melakukan Clustering Data Tweet Akun Blibli Pada Media Sosial Twitter Menggunakan K-Means Clustering,” J. Gaussian, vol. 10, no. 4, pp. 583–593, 2021.

A. Faesal, A. Muslim, A. H. Ruger, and K. Kusrini, “Sentimen analisis pada data tweet pengguna twitter terhadap produk penjualan toko online menggunakan metode k-means,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 19, no. 2, pp. 207–213, 2020.

J. E. Sembodo, E. B. Setiawan, and Z. A. Baizal, “Data Crawling Otomatis pada Twitter,” in Indonesian Symposium on Computing (Indo-SC), 2016, pp. 11–16.

M. Rivki and A. M. Bachtiar, “Implementasi algoritma K-Nearest Neighbor dalam pengklasifikasian follower twitter yang menggunakan Bahasa Indonesia,” J. Sist. Inf., vol. 13, no. 1, pp. 31–37, 2017.

D. Prasetyantoro, “Penerapan Algoritma K-Means Clustering untuk Mengelompokkan Data Opini Pengguna Twitter mengenai Pandemi Covid-19,” Stikubank (Unisbank) Semarang, 2021.

F. Khoirunnisa and H. Februariyanti, “Analisis Sentimen Kualitas Layanan Google Meet Menggunakan Naïve Bayes Classifiers Dan Association,” semanTIK, vol. 8, no. 1, p. 35, 2022, doi: 10.55679/semantik.v8i1.25120.

S. Karyadi, H. Yasin, and M. A. Mukid, “Analisis Kecenderungan Informasi Dengan Menggunakan Metode Text Mining (Studi Kasus: Akun Twitter@ Detikcom),” J. Gaussian, vol. 5, no. 4, pp. 763–770, 2016.

D. F. Pramesti, M. T. Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. e-ISSN, vol. 2548, p. 964X, 2017.

R. Hidayati, A. Zubair, A. H. Pratama, and L. Indana, “Analisis Silhouette Coefficient pada 6 Perhitungan Jarak K-Means Clustering,” Techno. Com, vol. 20, no. 2, pp. 186–197, 2021.

D. Suyanto, “Data Mining untuk klasifikasi dan klasterisasi data,” Bandung Inform. Bandung, 2017.

Y. W. Syaifudin and R. A. Irawan, “Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata Pantai Menggunakan Metode K-Means,” J. Inform. Polinema, vol. 4, no. 3, p. 189, 2018.

D. Adillah et al., “Implementation of K-Means Clustering Analysis To Determine Barriers To Online Learning Case Study : Swasta Yapendak Implementasi K-Means Clustering Analysis Untuk Menentukan Hambatan Pembelajaran Daring Pada Siswa Studi Kasus : Smp,” vol. 3, no. 3, pp. 1–7, 2022.

Published
2023-08-18
How to Cite
[1]
S. Santi and H. Februariyanti, “IMPLEMENTATION OF CLUSTERING ON TWEET UPLOADING SIDE EFFECTS OF COVID-19 POST VACCINATION USING K-MEANS ALGORITHM ”, J. Tek. Inform. (JUTIF), vol. 4, no. 4, pp. 779-786, Aug. 2023.