COMPARISON OF K-NEAREST NEIGHBOR AND NAIVE BAYES METHODS FOR CLASSIFICATION OF NEWS CONTENT

  • Andi Tejawati Program Studi Informatika, Fakultas Teknik, Universitas Mulawarman, Indonesia
  • Anindita Septiarini Program Studi Informatika, Fakultas Teknik, Universitas Mulawarman, Indonesia
  • Rondongalo Rismawati Program Studi Informatika, Fakultas Teknik, Universitas Mulawarman, Indonesia
  • Novianti Puspitasari Program Studi Informatika, Fakultas Teknik, Universitas Mulawarman, Indonesia
Keywords: News content classification, Text Processing, Naive Bayes, K-Nearest Neighbor, Confusion Matrix

Abstract

With the development of technology, news reading via the internet or digital tends to increase. In addition, there are about 300 to 400 news articles in one month and many categories of news articles in a web portal. It makes the editor's performance more and more because an editor must be able to edit articles from various channels and at the same time have to categorize articles one by one manually into several specified categories. This study aims to compare the K-Nearest Neighbor (KNN) and Naive Bayes methods to classify news content in order to obtain the best method. The data used in this study are news articles from the web portal kaltimtoday.co from January 2022 to March 2022. Therefore 576 data are obtained. The results showed that the application of the KNN and Naive Bayes methods could be used to classify news content. The KNN method is able to produce a higher accuracy value than Naïve Bayes, reaching 86% and 51% with test data of 100 news articles.

Downloads

Download data is not yet available.

References

A. Hadid, I. A. Alam, and M. Noor, “Peran Reporter dalam Meningkatkan Mutu Siaran pada Program Siaran Lampung Hari Ini di TVRI Lampung,” J. Visionist, vol. 9, no. 1, pp. 1–5, 2020.

C. Juditha, “Interaksi Komunikasi Hoax di Media Sosial serta Antisipasinya,” J. Pekommas, vol. 3, no. 1, pp. 31–44, 2018.

M. R. Kertanegara, “Penggunaan Clickbait Headline pada Situs Berita dan Gaya Hidup Muslim dream.co.id,” Mediat. J. Komun., vol. 11, no. 1, pp. 31–43, 2018, doi: 10.29313/mediator.v11i1.2751.

N. D. Sukmono, “Clickbait Judul Berita Online dalam Pemberitaan Covid-19,” Transform. J. Bahasa, Sastra, dan Pengajarannya, vol. 5, no. 1, p. 1, 2021, doi: 10.31002/transformatika.v5i1.3643.

Neilsen, “Media Cetak Mampu Mempertahankan Posisinya,” Neilsen.com, 2020. https://www.nielsen.com/id/en/press-releases/2017/media-cetak-mampu-mempertahankan-posisinya/ (accessed Sep. 19, 2022).

A. N. Roifa, “Text Mining Dengan Metode Naive Bayes Classifier Untuk Mengklasifikasikan Berita Berdasarkan Konten.” Institut Teknologi Sepuluh Nopember, 2018.

M. I. T. Rizal, “Klasifikasi Berita Olahraga pada Portal Berita Online dengan Metode K-Nearest Neighbour (KNN) Dan Levenshtein Distance,” J. Teknol. Terap. Sains 4.0, vol. 2, no. 1, pp. 31–49, 2021, [Online]. Available: https://ojs.unimal.ac.id/tts/article/view/3760%0Ahttps://ojs.unimal.ac.id/tts/article/viewFile/3760/2161.

H. Tantyoko, Adiwijaya, and U. N. Wisesty, “Perbandingan Pembobot untuk klasifikasi Topik Berita Menggunakan Decision Tree,” J. Teknol., vol. 2, no. 1, pp. 97–113, 2019.

D. N. Chandra, G. Indrawan, and I. N. Sukajaya, “Klasifikasi Berita Lokal Radar Malang Menggunakan Metode Naïve Bayes dengan Fitur N-Gram,” J. Ilmu Komput. Indones., vol. 4, no. 2, pp. 11–19, 2019.

C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naïve Bayes dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” J. Tek. Inform. Musirawas, vol. 3, no. 1, p. 1, 2018, doi: 10.32767/jutim.v3i1.286.

M. Ardiansyah, A. Sunyoto, and E. T. Luthfi, “Analisis Perbandingan Akurasi Algoritma Naïve Bayes an C4.5 untuk Klasifikasi Diabetes,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 147–156, 2021, doi: 10.29408/edumatic.v5i2.3424.

E. Widodo and P. Sa’adah, “Klasifikasi Data Penjualan Alat Tulis Kantor (ATK) Terlaris untuk Optimasi Strategi Pemasaran di Toko Citramedia Menggunakan Metode Naive Bayes,” SIGMA J. Teknol. Pelita Bangsa, vol. 10, no. 2, pp. 138–152, 2019.

R. Bahtiar, M. D. S. T, A. Setiawan, and P. Rosyani, “Analisis Perbandingan Detection Traffic Anomaly dengan Metode Naive Bayes dan DBSCAN,” J. Kreat. Mhs. Inform., vol. 1, no. 2, pp. 99–103, 2020.

A. C. Khotimah and E. Utami, “Comparison Naïve Bayes Classifier, K-Nearest Neighbor and Support Vector Machine in the Classification of Individual on Twitter Account,” J. Tek. Inform., vol. 3, no. 3, pp. 673–680, 2022, [Online]. Available: http://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/254.

N. N. Dzikrulloh, Indriati, and B. D. Setiawan, “Penerapan Metode K – Nearest Neighbor (KNN) dan Metode Weighted Product (WP) dalam Penerimaan Calon Guru dan Karyawan Tata Usaha Baru Berwawasan Teknologi (Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri ),” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 5, pp. 378–385, 2017.

E. Yulianti and Y. A. Nurdin, “Sistem Pendukung Keputusan Penerimaan Bantuan Siswa Miskin (BSM) Berbasis Online dengan Metode Knn (K-Nearest Neighbor) (Studi kasus : SMPN 1 Koto XI Tarusan),” J. Teknoif, vol. 6, no. 1, pp. 12–17, 2018, doi: 10.21063/jtif.2018.v6.1.12-17.

A. N. Yuliarina and Hendry, “Comparison Of Prediction Analysis Of Gofood Service Users Using The Knn & Naive Bayes Algorithm With Rapidminer Software,” J. Teknik Informatika (JUTIF), vol. 3, no. 4, pp. 847–856, 2022.

P. R. Sihombing and A. M. Arsani, “Perbandingan Metode Machine Learning Dalam Klasifikasi Kemiskinan Di Indonesia Tahun 2018,” J. Teknik Informatika (JUTIF), vol. 2, no. 1, pp. 51–56, 2021.

Published
2023-03-23
How to Cite
[1]
A. Tejawati, A. Septiarini, R. Rismawati, and N. Puspitasari, “COMPARISON OF K-NEAREST NEIGHBOR AND NAIVE BAYES METHODS FOR CLASSIFICATION OF NEWS CONTENT”, J. Tek. Inform. (JUTIF), vol. 4, no. 2, pp. 401-412, Mar. 2023.