OPTIMIZATION OF ACCESS POINT ARRANGEMENT AND PLACEMENT IN THE INDOOR ROOM OF SMP NEGERI 6 SALATIGA USING GENETIC ALGORITHM
Abstract
Access points are generally only recommended to load up to 40 clients only. Thus, proper placement and arrangement of access points in a room or building can optimize the signal strength received by users. The purpose of this study is to optimize the arrangement and placement of access points built using the genetic algorithm method. In the system built, the user is required to input the number of populations, iterations and the number of nodes 1 and 2. In the program implementation, the population functions to load the genes resulting from the possible placement of the access point based on the iteration results. The access point placement optimization system using the genetic algorithm method has been successfully implemented, the system can perform calculations in processing the ideal access point placement. Access point placement using genetic algorithms can provide recommendations for network architecture design in terms of the coverage area that needs to be used so that designers can save time on node point design and estimate the ideal price in determining the number of access points for network installation and can assist in determining the required coverage area. ideal for schools.
Downloads
References
N. . Puspitasari and R.Pulungan, “Optimisasi Penempatan Posisi Access Point pada Jaringan Wi-Fi Menggunakan Metode Simulated Annealing,” Citec J., vol. 2, pp. 52–64, 2015.
Irawan, “Jaringan Komputer Untuk Orang Awam,” Palembang: Maxikom, 2013.
F. F. Octavian, “Perencanaan Coverage Indoor Wireless Local Area Network (WLAN) Di Hotel Graha Petrokimia Gresik,” Skripsi Fak. Tek. Univ. Brawijaya, 2010.
A.Wanto, J. T. Hardinata, H. . Silaban, and W.Saputra, “Analisis dan Pemodelan Posisi Access Point Pada Jaringan WI-FI menggunakan Metode Simulated Annealing,” J. Sains Komput. Inform., vol. 1, pp. 134–143, 2017.
L. O. Siregar, M. R., & Sari, “Optimasi Wireless Access Point Menggunakan Algoritma Genetika ( Studi Kasus Gedung C Fakultas Teknik ),” vol. 5, pp. 1–8, 2018.
T. . K.P Kartika, Santoso, and S. N.A, “PENS-ITS dengan Menggunakan Metode Algoritma Genetika”,” Semin. Proy. Akhir Jur. Telekomun. Politek. Elektron. Negeri Surabaya – ITS, p. pp 13-23, 2010.
I. G. S. Artawan, “Optimasi Penataan Access Point Pada Jaringan Nirkabel Menggunakan Algoritma Simulated Annealing,” vol. 18, 1, 2021.
P. P. Feby, S. Gede, and I. G. A. K. D. D. H, “Rancangan Penempatan Access Point Untuk Mendukung Layanan E-Learning Di Area Kampus Elektro Universitas Udayana,” 2019.
A. A. Nugraha and Achmad M, “Optimasi Peletakan Base Transceiver Station di Kabupaten Mojokerto Menggunakan Algoritma Diferensial Evolution: Institut Teknologi Sepuluh Nopember Surabaya,” J. Fak. Tek. Elektro dan Elektron., 2015.
L. Suhery, Merancang Infrastruktur Nirkabel Menggunakan Pendekatan Metode Line of Sight, Edisi 2., vol. 1. 2018.
S. Rummi, “Optimasi Penempatan Access Point Pada Jaringan Wi-Fi Di Universitas Budi Luhur. Arsitron,” pp. 1–7, 2017.
R. L. Tobing, “Sistem Simulasi Penjadwalan Kuliah Dengan Menggunakan Algoritma Genetik,” Univ. Sumatera Utara, 2010.
R. Bhalla and A. Bagga, “Opinion mining framework using proposed rb-bayes model for text classification,” Int. J. Electr. Comput. Eng., vol. 9, no. 1, pp. 477–484, 2019, doi: 10.11591/ijece.v9i1.pp477-484.
I. W. Supriana, M. A. Raharja, I. M. S. Bimantara, and D. Bramantya, “Implementasi Dua Model Crossover Pada Algoritma Genetika Untuk Optimasi Penggunaan Ruang Perkuliahan,” J. Resist. (Rekayasa Sist. Komputer), vol. 4, no. 2, pp. 167–177, 2021, doi: 10.31598/jurnalresistor.v4i2.758.
Taslim, D. Toresa, D. Jollyta, D. Suryani, and E. Sabna, “Optimasi K-Means dengan Algoritma Genetika untuk Target Pemanfaat Air Bersih Provinsi Riau,” Indones. J. Comput. Sci., vol. 10, no. 1, pp. 1–12, 2021.
Copyright (c) 2022 Arzan Khoirul Anam, Wiwin Sulistyo
This work is licensed under a Creative Commons Attribution 4.0 International License.