DATA WAREHOUSE MODEL BASED ON KIMBALL METHODOLOGY TO SUPPORT DECISION MAKING IN ASSET MAINTENANCE

  • Vasthu Imaniar Ivanoti Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia
  • Muhammad Royani Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia
  • Samidi Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia
Keywords: Assets Management, Data Warehouse, Kimball, Maintenance, Network Device

Abstract

ITSM e-Prime is an ICT service management application based on ITSM framework owned by Pusintek that includes service desk, incident management, problem management, change management, release management, and configuration management processes. Currently there is a problem in determining the number of devices that will be included in the device maintenance contract or determining the number of devices that need to be replaced in a given year. The objective of this research is to build an asset management data warehouse so that it can be utilized by the Data Analysis and Presentation Team to produce a dashboard that presents data on network infrastructure assets that need to be maintained or replaced for budget planning needs. This descriptive verification analysis research used nine out of ninety tables from the ITSM e-Prime application and applied dimensional modeling Kimball to build a data warehouse because this methodology offers high query performance and understandable by end-user. The resulting data warehouse were tables in the form of star-schema. The tests were carried out by qualitative methods, namely quality testing by users (user acceptance test and blackbox testing) and quantitative method, namely comparing the number of infrastructure devices included in the maintenance contract in 2022. The final result of this research is a data warehouse consisting of fact table F_infrastructure and dimension table D_Merk, D_Area, D_Kategori, D_EoS, D_Garansi, and D_StatusPemeliharaan with acceptance percentage of 95% based on the test results.

Downloads

Download data is not yet available.

References

International Organization for Standardization, INTERNATIONAL STANDARD ISO/IEC 20000-1 : Information technology - Service management. 2018.

Keputusan Menteri Keuangan Nomor 751/KMK.01/2019 tentang Manajemen Mutu dan Layanan Teknologi Informasi dan Komunikasi di Lingkungan Kementerian Keuangan. Jakarta: Kementerian Keuangan, 2019.

Peraturan Menteri Keuangan (PMK) Nomor 208/PMK.02/2019 tentang Petunjuk Penyusunan dan Penelaahan Rencana Kerja dan Anggaran Kementerian Negara/Lembaga dan Pengesahan Daftar Isian Pelaksanaan Anggaran. Jakarta: Kementerian Keuangan, 2019.

Peraturan Menteri Keuangan Nomor 229/PMK.01/2019 tentang Perubahan Kedua Atas Peraturan Menteri Keuangan Nomor 217/KMK.01/2018 tentang Organisasi dan Tata Kerja Kementerian Keuangan. Kementerian Keuangan, 2019.

M. Lubis, R. C. Annisyah, and L. W. L, “ITSM Analysis using ITIL V3 in Service Operation in PT . Inovasi Tjaraka,” IOP Conf. Ser. Mater. Sci. Eng., vol. 847, 2020, doi: 10.1088/1757-899X/847/1/012077.

T. Peftieva, R. Jouravlev, and AXELOS ITIL Practice, Service Configuration Management ITIL® 4 Practice Guide, no. May. 2020.

F. Schorr, A. Ghosh, and L. Hvam, “Managerial Challenges in Designing an IT Service Configuration System,” 22nd Int. Config. Work., pp. 81–88, 2020.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems Seventh Edition, Seventh. Pearson, 2016.

T. F. Efendi and M. Krisanty, “Warehouse Data System Analysis PT . Kanaan Global Indonesia,” Int. J. Comput. Inf. Syst., vol. 01, no. 03, pp. 70–73, 2020.

I. M. A. Bhaskara, L. G. P. Suardani, and M. Sudarma, “Data Warehouse Implemantation To Support Batik Sales Information Using MOLAP,” Int. J. Eng. Emerg. Technol., vol. 3, no. 1, pp. 45–51, 2018.

T. B. Arimbi and S. Riyadi, “Implementing of Data Warehouse Data Alumni using the Single Dimensional Data Store method,” vol. 1471, pp. 1–12, 2020, doi: 10.1088/1742-6596/1471/1/012021.

L. Yessad, “Comparative study of data warehouses modeling approaches : Inmon , Kimball and Data Vault Comparative Study of Data Warehouses Modeling Approaches : Inmon , Kimball and Data Vault,” 2016 Int. Conf. Syst. Reliab. Sci., no. July, pp. 95–99, 2020, doi: 10.1109/ICSRS.2016.7815845.

R. Kimball and M. Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (2nd Edition), Second. John Wiley & Sons, 2002.

M. Kimball, R., Ross, The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (3rd Edition), Third. John Wiley & Sons, 2013.

V. Nicolicin-Georgescu, V. Benatier, R. Lehn, and H. Bri, “Business Intelligence – CDMB – Implementing BI-CMDB to Lower Operation Cost Expenses and Satisfy Increasing User Expectations,” Effic. Decis. Support Syst. - Pract. Challenges Multidiscip. Domains, pp. 67–82, 2011, doi: 10.5772/16712.

E. V. F. Lapura et al., “Development of a University Financial Data Warehouse and its Visualization Tool Visualization Tool,” Procedia Comput. Sci., vol. 135, pp. 587–595, 2018, doi: 10.1016/j.procs.2018.08.229.

M. Himami, A. S. Abdullah, I. N. Yulita, and M. Suryani, “Utilization of Data Warehouse in Business Intelligence with Kimball Method at Company XYZ,” in 2021 International Conference on Artificial Intelligence and Big Data Analytics, 2021, pp. 1–6. doi: 10.1109/ICAIBDA53487.2021.9689720.

H. Henderi, U. Raharja, and D. Setiyadi, “A Proposed Model for Sales Data Warehouse Using Nine-step Design A Proposed Model for Sales Data Warehouse Using Nine-step Design,” Int. J. Adv. Sci. Technol., vol. 29, pp. 2127–2136, 2020.

I. P. A. E. Pratama, “The Implementation and Testing of Online Self-Diagnose Covid19 Application Using CBR and UAT,” Int. J. Adv. Data Inf. Syst., vol. 2, no. 2, pp. 73–83, 2021, doi: 10.25008/ijadis.v2i2.1223.

T. Satria and A. Indrayanto, “Strategic Study : The Role of Condition-Based Maintenance and Preventive Maintenance of Electrical Reliability,” Int. Sustain. Compet. Advant., pp. 25–30, 2020.

J. Q. Hwang and H. A. Samat, “Maintenance Cost Reduction of Paddy Seed Production Machinery by Implementing Preventive Maintenance System,” IOP Conf. Ser. Mater. Sci. Eng., 2019, doi: 10.1088/1757-899X/557/1/012075.

K. Yan, H. Lim, P. Zheng, and C. Chen, “A state-of-the-art survey of Digital Twin : techniques , engineering product lifecycle management and business innovation perspectives,” J. Intellegent Manuf., vol. 31, no. August, pp. 1313–1337, 2020, doi: 10.1007/s10845-019-01512-w.

G. Soos, D. Kozma, F. N. Janky, and P. Varga, “IoT Device Lifecycle – a Generic Model and a use case for Cellular Mobile Networks,” IEEE 6th Int. Conf. Futur. Internet Things Cloud, no. August, pp. 176–183, 2018, doi: 10.1109/FiCloud.2018.00033.

“Cisco End-of-Life Policy.” https://www.cisco.com/c/en/us/products/eos-eol-policy.html (accessed Sep. 27, 2022).

“Huawei Product Enf of Life Policy.” https://support.huawei.com/enterprise/en/warranty-policy (accessed Sep. 27, 2022).

I. Virdyna and S. Samidi, “Online Based Memorandum of Understanding (MOU) Data Exchange System Design with EDI Method,” J. Integr. Adv. Eng., vol. 1, no. 2, pp. 89–100, 2021, doi: 10.51662/jiae.v1i2.19.

A. R. Hermawanto, “Pengaruh Kepemimipinan Transpormasional Dan Lingkungan Kerja Terhadap Motivasi Serta Dampaknya Pada Kinerja Dosen,” Sistemik, vol. 2, no. 4, 2016.

S. K. Rahayu, “Pengaruh Data Quality Terhadap Business Intelligence System Implikasinya Pada Information Quality Di Organisasi Sektor Publik: Survey Pada KPP Pratama Di Jawa Barat Dan DKI Jakarta,” JBPTUNIKOMPP, 2018.

A. . N. Narendra, S. I. Murpratiwi, and M. Sudarma, “Design of E-Grant Application Data Warehouse,” Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 11, 2017, doi: 10.24843/ijeet.2017.v02.i01.p03.

A. D. Barahama and R. Wardani, “Data analysis and data warehouse design based on Pentaho data integration ( kettle ) to support the determination of student learning achievement,” Annu. Appl. Sci. Eng. Conf. (AASEC 2020), no. 5, 2021, doi: 10.1088/1757-899X/1098/5/052089.

G. Garani and M. A. Butakova, “A Data Warehouse Approach for Business Intelligence,” 2019 IEEE 28th Int. Conf. Enabling Technol. Infrastruct. Collab. Enterp., pp. 70–75, 2019, doi: 10.1109/WETICE.2019.00022.

I. G. N. W. Partha, P. N. M. Weking, and P. A. Mertasana, “Data Center Data Warehouse Development at Z Bali Clinic Using the Kimball Nine-Step Method,” Int. J. Eng. Emerg. Technol., vol. 4, no. 1, pp. 53–59, 2019.

G. Yu, J. Liu, J. Du, M. Hu, and V. Sugumaran, “An Integrated Approach for Massive Sequential Data Processing in Civil Infrastructure Operation and Maintenance,” IEEE Access, vol. 6, pp. 19739–19751, 2018, doi: 10.1109/ACCESS.2018.2816001.

P. Edastama, A. Dudhat, and G. Maulani, “Use of Data Warehouse and Data Mining for Academic Data A Case Study at a National University,” Int. J. Cyber IT Serv. Manag., vol. 1, no. 2, pp. 206–215, 2021.

R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit. Wiley Publishing, Inc, 2004.

W. Gede, S. Parwita, N. Luh, W. Sri, R. Ginantra, and I. M. D. Putra, “Retail Data Visualization in Business Intelligence System for Ayu Nadi Group,” 2022, doi: 10.4108/eai.27-11-2021.2315530.

“Cisco Support API Docs.” https://developer.cisco.com/docs/support-apis/#!eox (accessed Sep. 27, 2022)..

Published
2023-02-10
How to Cite
[1]
V. I. Ivanoti, M. Royani, and S. Samidi, “DATA WAREHOUSE MODEL BASED ON KIMBALL METHODOLOGY TO SUPPORT DECISION MAKING IN ASSET MAINTENANCE”, J. Tek. Inform. (JUTIF), vol. 4, no. 1, pp. 15-24, Feb. 2023.