IMPLEMENTATION OF MARKET BASKET ANALYSIS WITH APRIORI ALGORITHM IN MINIMARKET

  • Abdul Hafiidh Priyanto Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto, Indonesia
  • Amalia Beladinna Arifa Teknik Informatika, Fakultas Informatika, Institut Teknologi Telkom Purwokerto, Indonesia
Keywords: Apriori Algorithm, Flask, Market Basket Analysis, Transaction Data

Abstract

The rapid growth of the retail business has an impact on increasing the economic growth of the community. The retail business has high profit potential in areas that have a large population such as Indonesia. A retail business that is popular among the public is a modern market retail business or convenience store. With the rapid growth, it gives a tendency between convenience stores to compete. By designing a marketing strategy is one of the efforts to win the competition in supermarkets. Management needs to understand the purchase behavior made by customers, this action is useful to find out the products that customers are popularly buying. Association algorithm is a form of algorithm in the field of data mining that serves to provide correlation between one item and another. there are several popular algorithms in applying association algorithms one of which is the a priori algorithm created by Agrawal and Srikant in 1994. To support the understanding of customer purchase patterns, it is necessary to implement market basket analysis that has the ability to recognize pattern patterns from transaction data in a convenience store. Performance in market basket analysis also needs to be tested to handle a lot of transaction data, considering that the recording of sales transaction data continues to run over time. The implementation carried out using flask is one of the implementations that is relevant to technological developments, this implementation results in a relatively short data speed with the factor that the magnitude of transaction data is middle to lower, which is 14,963 transaction data.

Downloads

Download data is not yet available.

References

M. I. P. Hant and Hendry, “Data Mining Technique Using Naïve Bayes Algorithm To Predict Shopee Consumer Satisfaction Among Millennial Generation Teknik Data Mining Menggunakan Algoritma Naive Bayes Untuk Memprediksi Kepuasan Konsumen Shopee Dikalangan Generasi,” J. Tek. Inform., vol. 3, no. 4, pp. 829–838, 2022.

E. Norman, Y. Permana, and R. A. Prasetyowati, “Perbandingan Keberlanjutan Bisnis Retail Minimarket Modern Dan Retail Tradisional Warung Di Jawa Barat,” Al-Kharaj J. Ekon. Keuang. Bisnis Syariah, vol. 1, no. 2, pp. 139–157, 2019, doi: 10.47467/alkharaj.v1i2.52.

E. Elisa, “Market Basket Analysis Pada Mini Market Ayu Dengan Algoritma Apriori,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 472–478, 2018, doi: 10.29207/resti.v2i2.280.

M. Badrul, “Algoritma Asosiasi Dengan Algoritma Apriori Untuk Analisa Data Penjualan,” J. Pilar Nusa Mandiri, vol. XII, no. 2, pp. 121–129, 2016.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

E. D. Sikumbang, “Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori,” J. Tek. Komput. AMIK BSI, vol. Vol 4, No., no. September, pp. 1–4, 2018.

P. H. Simbolon, “Implementasi Data Mining Pada Sistem Persediaan Barang Menggunakan Algoritma Apriori ( Studi Kasus : Srikandi Cash Credit Elektronic dan Furniture ),” J. Ris. Komput., vol. 6, no. 4, pp. 401–406, 2019.

R. Rusnandi, S. Suparni, and A. B. Pohan, “Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritma Fp-Growth Pada Pd Pasar Tohaga,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 119, 2020, doi: 10.23887/janapati.v9i1.19349.

F. Panjaitan, A. Surahman, and T. D. Rosmalasari, “Analisis Market Basket Dengan Algoritma Hash-Based Pada Transaksi Penjualan (Studi Kasus: Tb. Menara),” J. Teknol. dan Sist. Inf., vol. 1, no. 2, pp. 111–119, 2020.

A. Rifqy Alfiyan, A. Hafidzul Kahfi, M. Rizky Kusumayudha, and M. Rezki, “Analisis Market Basket Dengan Algoritma Apriori Pada Transaksi Penjualan Di Freshfood,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 4, no. 1, pp. 1–8, 2019.

S. H. Pratiwi, R. Andreswari, and I. Darmawan, “APRIORI PADA RUMAH SAKIT PORT MEDICAL CENTER JAKARTA PREDICTION OF APPROACH TO DISEASE PATTERN USING APRIORI ALGORITHM AT PORT MEDICAL CENTER HOSPITAL JAKARTA.”

F. R. Industri and U. Telkom, “Penerapan Data Mining Terhadap Data Penjualan Baju Dengan Metode Algoritma Apriori Pada Toko Bbz Application Of Data Mining On Clothing Sales Data With Apriori Algorithm Method At Bbz Store Program Studi S1 Sistem Informasi ,” 2019.

A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.

R. Irsyad, “Penggunaan Python Web Framework Flask Untuk Pemula,” 2018, doi: 10.31219/osf.io/t7u5r.

B. P. Putra and Y. A. Susetyo, “Implementasi Api Master Store Menggunakan Flask, Rest Dan Orm Di Pt Xyz,” Sistemasi, vol. 9, no. 3, p. 543, 2020, doi: 10.32520/stmsi.v9i3.899.

J. Jeovano, D. Teknik, I. Institut, and T. Terpadu, “2D Data Visualization Tools Menggunakan Flask dan AngularJS,” pp. 91–97.

Published
2022-10-24
How to Cite
[1]
A. H. Priyanto and A. B. Arifa, “IMPLEMENTATION OF MARKET BASKET ANALYSIS WITH APRIORI ALGORITHM IN MINIMARKET”, J. Tek. Inform. (JUTIF), vol. 3, no. 5, pp. 1423-1429, Oct. 2022.