TONE DETECTION ON TERANIKA MUSICAL INSTRUMENT USING DISCRETE WAVELET TRANSFORM AND DECISION TREE CLASSIFICATION
Abstract
Musical instruments are one of the cultures that must be preserved. Teranika is one of the traditional musical instruments from the Majalengka area, which is made of clay. Currently, the manufacture of conventional musical instruments is still done manually, so there are still differences in the tone produced. Meanwhile, the quality of a musical instrument is determined by the accuracy of the technique. Therefore, we need a system that can accurately detect the method's accuracy. The author designed a tone detection system for Teranika musical instruments to help artisans carry out quality control. This system will detect whether or not the musical instrument is successfully matched with the right tone and agent. The technique contained in this musical instrument is Do Re Mi Fa So La Si Do high. To overcome these problems, the author makes this tone detection system using the Discrete Wavelet Transform method and the Decision Tree classification. The working principle of this system is that the recorded sound of musical instruments will be transmitted to this system. Then the sound will be processed as input and matched with the essential voice in the database. The output of this system produces samples according to the sampling frequency used. The test results show the best results at decomposition level 6, a thresholding value of 0.05, and a Fine Tree classification type with an accuracy of 87.5%
Downloads
References
R. H. Ashary, R. Patmasari, and S. Saidah, “Sistem Deteksi Nada Alat Musik Angklung Menggunakan Metode Harmonic Product Spectrum Tone Detection System on Angklung Musical Instrument Using Harmonic Product Spectrum Method,” e-Proceeding Eng., vol. 6, no. 1, p. 1039, 2019.
S. Ramdhan, Prayogo, and A. R. Azkia, “Media Pengenalan Alat Musik Tradisional Jawa Tengah Berbasis Multimedia,” Sisfotek Glob., vol. 8, no. 2, pp. 117–122, 2018.
S. Gani and B. Setiyono, “Teknik Invisible Watermarking Digital Menggunakan Metode DWT (Discrete Wavelet Tarnsform),” J. Sains dan Seni ITS, vol. 7, no. 2, 2019, doi: 10.12962/j23373520.v7i2.29845.
P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “PRISMA, Prosiding Seminar Nasional Matematika Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
Y. I. Kurniawan, A. Fatikasari, M. L. Hidayat, and M. Waluyo, “Prediction for Cooperative Credit Eligibility Using Data Mining Classification With C4.5 Algorithm,” J. Tek. Inform., vol. 2, no. 2, pp. 67–74, 2021, doi: 10.20884/1.jutif.2021.2.2.49.
F. Ferdiawan, B. Hartono, J. T. Lomba, J. No, and S. 50241, “Deteksi Suara Chord Piano Menggunakan Metode Convolutional Neural Network,” J. Inform. Rekayasa Elektron., vol. 5, no. 1, pp. 62–68, 2022, [Online]. Available: http://e-journal.stmiklombok.ac.id/index.php/jire
M. A. As Sarofi, I. Irhamah, and A. Mukarromah, “Identifikasi Genre Musik dengan Menggunakan Metode Random Forest,” J. Sains dan Seni ITS, vol. 9, no. 1, pp. 79–86, 2020, doi: 10.12962/j23373520.v9i1.51311.
L. NOVAMIZANTI and A. KURNIA, “Analisis Perbandingan Kompresi Haar Wavelet Transform dengan Embedded Zerotree Wavelet pada Citra,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 3, no. 2, p. 161, 2015, doi: 10.26760/elkomika.v3i2.161.
F. I. Ikromina and E. I. H. Ujianto, “Invisible Watermarking Citra Digital Menggunakan Kombinasi Metode Discrete Cosine Transform Dan Discrete Wavelet Transform,” JANAPATI J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 261–271, 2019.
U. Ilmi and Z. Abidin, “Simulasi Daya Harmonik berbasis Transformasi Wavelet dengan Matlab,” J. Elektro, vol. 4, no. 1, p. 244, 2019, doi: 10.30736/je.v4i1.299.
H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 74–78, 2018, doi: 10.26438/ijcse/v6i10.7478.
E. R. Arboleda, “Comparing performances of data mining algorithms for classification of green coffee beans,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 1563–1567, 2019.
P. Kasih, “Pemodelan Data Mining Decision Tree Dengan Classification Error Untuk Seleksi Calon Anggota Tim Paduan Suara,” Innov. Res. Informatics, vol. 1, no. 2, pp. 63–69, 2019, doi: 10.37058/innovatics.v1i2.918.
U. Sharma and M. Agrawal, “Study of Sub-Nyquist Sampling Techniques for Multi-band Signals,” 2020 IEEE 17th India Counc. Int. Conf. INDICON 2020, pp. 3–7, 2020, doi: 10.1109/INDICON49873.2020.9342573.
K. A. Sugianta, I. G. A. Gunadi, and G. Indrawan, “Analisis Pola Bunyi Sunari Berdasarkan Metode Fast Fourier Transform,” J. Ilmu Komput. Indones., vol. 5, no. 2, pp. 14–21, 2020.
Copyright (c) 2023 sofia saidah, Fadia Qothrunnada, Bambang Hidayat, Tasya Busrizal Putri, Darwindra
This work is licensed under a Creative Commons Attribution 4.0 International License.