IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK WITH BACKPROPAGATION ALGORITHM FOR RATING CLASSIFICATION ON SALES OF BLACKMORES IN TOKOPEDIA
Abstract
The rating assessment classification contains feedback from consumers, which is given in the form of stars which aims to assess a product. However, the amount of data in the classification process often have differences in each class or is called an imbalanced dataset. These problems can affect the classification results. An imbalanced dataset can be overcome by applying random oversampling. To classify the rating assessment, this study proposes the Neural network method, which has a good accuracy level with the backpropagation algorithm and applies random oversampling to overcome the unbalanced amount of data. The results indicate that the neural network method with the backpropagation algorithm can classify the available data with an accuracy level of 85%. The application of resampling data using random oversampling and determining the amount of distribution of training data, testing data, number of epochs and the correct number of batch sizes affect the results obtained.
Downloads
References
P. R. Sihombing and A. M. Arsani, "Perbandingan Metode Machine learning Dalam Klasifikasi Kemiskinan Di Indonesia Tahun 2018," Jurnal Teknik Informatika., vol. 2, no. 1, pp. 51-56, 2021, doi: 10.20884/1.jutif.2021.2.1.52.
J. J. Purnama, S. Rahayu, S. Nurdiani, T. Haryanti, and N. A. Mayangky, "Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Diabetes," Indonesian Journal on Computer and Information Technology., vol. 5, no. 1, pp. 1-7, 2020.
N. Hadianto, H. B. Novitasari, and A. Rahmawati, "Klasifikasi Peminjaman Nasabah Bank Menggunakan Metode Neural Network," Jurnal PILAR Nusa Mandiri., vol. 5, no. 2, pp. 163-170, 2019, doi: 10.33480/pilar.v15i2.658.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh,
and A. Mulyani. Comparison of Classification Algorithm and Feature Selection in Bitcoin Sentiment Analysis. Jurnal Teknik Informatika. vol. 13, no. 3, pp. 739-744. 2022.
M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine Learning. Cambridge University Press England.
Bramer and Max, Principles of Data Mining. Springer London.
N. Sharma, H. V. Bhandari, N. S. Yadav, and H. V. J. Shroff, "Optimisation of IDS using Filter-Based Feature Selection and Machine learning Algorithms" International Journal of Innovative Technology and Exploring Engineering., vol. 10, no. 2, pp. 96-102, 2020.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, N, "Perbandingan Normalisasi Data Untuk Klasifikasi Wine Menggunakan Algoritma K-NN." Journal of Computer Engineering System and Science., vol. 4, no. 1, pp. 78-82, 2019, doi: 10.24114/cess.v4i1.11458.
A. M. Mahmood, "Class Imbalance Learning in Data Mining – A Survey," International Journal of Communication Technology for Social Networking Services., vol. 3, no. 2, pp. 17-38, 2015, DOI: 10.21742/ijctsns.2015.3.2.2.
A. W. Putri, A.W, "Implementasi Artificial Neural Network (ANN) Backpropagation Untuk Klasifikasi Jenis Penyakit Pada Daun Tanaman Tomat.," Jurnal Ilmiah Matematika., vol. 9, no. 2, pp. 344-350, 2021, doi: 10.26740/mathunesa.v9n2.p344-350.
E. Y. Susantia and E. Maiyana, "Pemanfaatan ANN untuk Prediksi Penjualan Online Industri Rumahan selama Pandemi Covid-19," Jurnal Sains dan Informatika., vol. 7, no. 1, pp. 1-7, 2021, doi: 10.22216/jsi.v7i1.234.
J. R. Prabowo, R. Santoso, and H. Yasin, "Implementasi Jaringan Syaraf Tiruan Backpropagation Dengan Algoritma Conjugate Gradient Untuk Klasifikasi Kondisi Rumah (Studi Kasus Di Kabupaten Cilacap Tahun 2018)," Jurnal Gaussian., vol. 9, no. 1, pp. 41-49, 2020, doi: 10.14710/j.gauss.v9i1.27522.
V. Vijayalakshmi and K. Venkatachalapathy, "Deep Neural Network for Multi-Class Prediction of Student Performance in Educational Data," International Journal of Recent Technology and Engineering (IJRTE)., vol. 8, no. 2, pp. 5073-5081, 2019, DOI: 10.35940/ijrte.B2155.078219.
N. D. Lewis, Neural Network for Time Series Forecasting with R. CreateSpace Independent Publishing Platform US.
A. A. Arifiyanti, R. M. Pradana, and I. F. Novian, "Klasifikasi produk retur dengan algoritma pohon keputusan C4.5," Jurnal IPTEK., vol. 22, no. 1, pp. 79-86, 2018, doi: 10.31284/j.iptek.2018.v22il.243.
J., Lever, M., Krzywinski, and N., Altman, "Classification evaluation," Nat Methods, vol. 13, pp. 603–604, 2016, doi: 10.1038/nmeth.3945.
Copyright (c) 2022 Dian Kurniasari
This work is licensed under a Creative Commons Attribution 4.0 International License.