SENTIMENT ANALYSIS OF THE COMMUNITY IN THE TWITTER TO THE 2020 ELECTION IN PANDEMIC COVID-19 BY METHOD NAIVE BAYES CLASSIFIER
Abstract
The 2020 regional elections in the midst of the COVID-19 pandemic are starting to get crowded starting from the real world and in cyberspace, especially on Twitter social media. Twitter's existence has been widely used by various communities in recent years. Twitter is one of the media that represents the public response regarding public issu. Ahead of the general election (PEMILU), there are usually some parties who want to know the results of public sentiment or response to the issue, namely academics, intellectuals or even political opponents. Nevertheless, the implementation of local elections is very polemic in the community, therefore this study tries to analyze tweets that talk about issue public, namely the 2020 elections in the wake of the COVID-19 Pandemic. The analysis usually uses the classification of tweets containing public sentiment about the issue. The classification method used in this research is Naive Bayes Classifier (NBC) And Support Vector Machine (SVM). Naive Bayes Classifier is combined with features that can detect weighting using probability. The classification of tweets in this study was obtained based on a combination of two classes namely sentiment class and category class. The classification of sentiment consists of positive and negative. Test results on built-in applications show that accuracy with Naive Bayes delivers better results than Support Vector Machine. However, overall the use of the Naive Bayes method has a good performance to classify tweets with an accuracy rate of 92.2%
Downloads
References
F. D. Anisa, “Enam Bulan Pandemi, Angka Penularan Covid-19 Semakin Tinggi,” 2020. https://www.beritasatu.com/kesehatan/672143/enam-bulan-pandemi-angka-penularan-covid19-semakin-tinggi (accessed Jan. 14, 2021).
P. Rizqiah, “Klasifikasi Komentar Twitter Tentang Pengesahan UUMD3 Menggunakan Metode Naïve Bayes,” 2018.
Yudianzer, “Menurun, Segini Jumlah Pengguna Twitter Sekarang - Pos Harian.” https://yudianzer.blogspot.com/2016/12/menurun-segini-jumlah-pengguna-twitter.html (accessed Jan. 14, 2021).
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.
L. Y. T. Suarez, “Machine Learning Prediksi Karakter Pengguna Hastag (#),” pp. 1–27, 2015.
A. P. Wijaya and H. A. Santoso, “Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government,” J. Appl. Intell. Syst., vol. 1, no. 1, pp. 48–55, 2016, [Online]. Available: https://publikasi.dinus.ac.id/index.php/jais/issue/view/76.
A. T. J. Harjanta, A. Syukur, and C. Supriyanto, “Penerapan Pembobotan Atribut Pada Algoritma Naive Bayes Untuk Analisis Sentimen Review Aplikasi Android Dari Google Play,” Jurnal Cyberku, vol. 11, no. April, pp. 78–89, 2015.
F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19-25, 2017, doi: 10.29207/resti.v1i1.11.
R. Ferdiana, F. Jatmiko, D. D. Purwanti, A. Sekar, T. Ayu, and W. F. Dicka, “Dataset Indonesia untuk Analisis Sentimen,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 8, no. 4, pp. 334-339, 2019.
H. Najjichah, A. Syukur, and H. Subagyo, “Pengaruh Text Preprocessing Dan Kombinasinya,” J. Teknol. Inf., vol. 15, no. 1, pp. 1–11, 2019.
A. R. Nugraha and G. Pramukasari, “Sistem Informasi Akademik Sekolah Berbasis Web Di Sekolah Menengah Pertama Negeri 11 Tasikmalaya,” J. Manaj. Inform., vol. 4, no. 2, pp. 1–10, 2017.
R. P. Mahardikawati and Nurgiyatna, “Sistem Informasi Industri Kecil Menengah Pemerintahan Kabupaten Boyolali Berbasis Website,” J. Tek. Inform (JUTIF), vol. 1, no. 2, pp. 53–60, 2020.
S. Suryono, E. Utami, and E. T. Luthfi, “Klasifikasi Sentimen Pada Twitter Dengan Naive Bayes Classifier,” Angkasa J. Ilm. Bid. Teknol., vol. 10, no. 1, pp. 89-96, 2018, doi: 10.28989/angkasa.v10i1.218.
ICHI.PRO, “Streamlit - Merevolusi Pembuatan Aplikasi Data.” https://ichi.pro/id/streamlit-merevolusi-pembuatan-aplikasi-data-248940993548562 (accessed Jan. 09, 2021).
P. S. M. Suryani, L. Linawati, and K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, pp. 145-148, 2019, doi: 10.24843/mite.2019.v18i01.p22.
I. Sunni and D. H. Widyantoro, “Analisis Sentimen dan Ekstraksi Topik Penentu Sentimen pada Opini Terhadap Tokoh Publik,” J. Sarj. Inst. Teknol. Bandung Bid. Tek. Elektro dan Inform., vol. 1, no. 2, pp. 200–206, 2012.
Copyright (c) 2021 Akhmad Muzaki, Arita Witanti
This work is licensed under a Creative Commons Attribution 4.0 International License.