• Reza Syafrian Setiadi Program Studi Informatika, Fakultas Teknik, Universitas Widyatama, Indonesia
  • Feri Sulianta Program Studi Informatika, Fakultas Teknik, Universitas Widyatama, Indonesia
Keywords: chilli, fuzzy mamdani, monitoring, prototype, watering plants


In this research, the design and manufacture of a prototype for a monitoring and watering system that integrates the concept of fuzzy logic in chili plants are carried out. The relationship between air humidity, air temperature and soil moisture can be identified to determine the right volume of water. The fuzzy system is built based on the chili farming environment and the specifications of the installed water pump. This system uses NodeMCU ESP8266 as the main controller for fuzzy inference calculations. The fuzzy inference calculation process uses the Mamdani method. Information such as air humidity, air temperature, soil moisture and water level will be displayed in real-time on the Blynk application connected to the internet network. The process of watering chili plants in this system is carried out according to a predetermined schedule. Results for seven days showed that the average duration of watering plants was 3.96 seconds with a flow rate ± 43.12 ml/s. By considering the maximum volume of the fuzzy system, the water consumption can be reduced with 30.96% efficiency.


Download data is not yet available.


Sumbar, “Budidaya Cabai Dalam Pot atau Polybag,” Balai Pengajian Teknologi Pertanian Sumatera Barat, 2017. (accessed Oct. 29, 2021).

S. Swastika, D. Pratama, T. Hidayat, and K. B. Andri, Buku Petunjuk Teknis Teknologi Budidaya Cabai Merah. Riau, 2017.

P. K. Kashyap, S. Kumar, A. Jaiswal, M. Prasad, and A. H. Gandomi, “Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network,” IEEE Sens. J., vol. 21, no. 16, pp. 17479–17491, 2021, doi: 10.1109/JSEN.2021.3069266.

S. E. Widodo, S. Hadi, and N. Nurmauli, Penuntun Praktikum Produksi Tanaman Hortikultura. Lampung: Jurusan Agroteknologi Fakultas Pertanian Universitas Lampung, 2019.

N. Abdullah et al., “Towards Smart Agriculture Monitoring Using Fuzzy Systems,” IEEE Access, vol. 20, pp. 1–9, 2020, doi: 10.1109/ACCESS.2020.3041597.

G. Lambert-torres, L. E. B. da Silva, C. H. V. de Moraes, and Y. M. C. Masselli, “Fuzzy Systems,” in Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence, First Edit., M. Eremia, C.-C. Liu, and A.-A. Edris, Eds. Wiley-IEEE Press, 2016, pp. 785–818.

M. Rusli, Dasar Perancangan Kendali Logika Fuzzy, Edisi Pert. Malang: UB Media, 2017.

M. Lesot, Fuzzy Approaches for Soft Computing and Approximate Reasoning : Theories and Applications. Springer, 2020.

E. Krisnaningsih, A. B. Sulistyo, A. Rahim, and S. Dwiyatno, “Fuzzy risk priority number assessment to detect midsole product defects,” J. Sist. dan Manaj. Ind., vol. 6, no. 1, pp. 77–88, 2022.

S. Napitupulu, E. B. Nababan, and P. Sihombing, “Comparative Analysis of Fuzzy Inference Tsukamoto Mamdani and Sugeno in the Horticulture Export Selling Price,” Int. Conf. Mech. Electron. Comput. Ind. Technol., pp. 183–187, 2020, doi: 10.1109/MECnIT48290.2020.9166587.

S. M. Upadhya and S. Mathew, “Implementation of Fuzzy Logic in Estimating Yield of a Vegetable Crop Implementation of Fuzzy Logic in Estimating Yield of a Vegetable Crop,” in Journal of Physics: Conference Series, 2020, pp. 1–11, doi: 10.1088/1742-6596/1427/1/012013.

I. Permadi, A. K. Nugroho, and M. R. Rachmat, “Prediction of the Amount of Pepper Harvest By Using Fuzzy,” J. Tek. Inform., vol. 3, no. 1, pp. 177–182, 2022, doi:

D. S. Wibowo, Y. Yanitasari, and Dedih, “Sistem Pakar Diagnosis Potensi Penyebaran Penyakit pada Tanaman Cabai Menggunakan Fuzzy Mamdani,” J. Teknol. dan Sist. Komput., vol. 6, no. April, pp. 71–75, 2018, doi: 10.14710/jtsiskom.6.2.2018.71-75.

H. Y. Truneh, G. Alemu, and T. M. Balcha, “Fuzzy Logic based Automatic Plant Watering System,” Int. J. Eng. Res. Technol., vol. 10, no. 07, pp. 695–709, 2021.

M. S. Munir, I. S. Bajwa, and S. M. Cheema, “An intelligent and secure smart watering system using fuzzy logic and blockchain ✩,” Comput. Electr. Eng., vol. 77, pp. 109–119, 2019, doi: 10.1016/j.compeleceng.2019.05.006.

M. Setiani Asih, “Sistem Pendukung Keputusan Fuzzy Mamdani pada Alat Penyiraman Tanaman Otomatis,” J. Sist. Inf., vol. 02, 2018.

O. Lengkong and A. Taghulihi, “Prototipe Iot Dan Pertanian Cerdas: Memantau Tanaman Buah Dan Sayuran Musiman,” in SENSITIf: Seminar Nasional …, 2019, pp. 415–422, [Online]. Available:

N. K. Verma, V. Singh, S. Rajurkar, and M. Aqib, “Fuzzy inference network with mamdani fuzzy inference system,” in Computational Intelligence: Theories, Applications and Future Directions, vol. 1, Springer Singapore, 2019, pp. 375–388.

E. Sufarnap and S. Sudarto, “Penerapan Metode Fuzzy Mamdani dalam Penentuan Jumlah Produksi,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2019, no. Juli, pp. 379–382.

How to Cite
R. S. Setiadi and F. Sulianta, “SMART MONITORING AND WATERING OF CHILI PLANTS USING A FUZZY MAMDANI SYSTEM ”, J. Tek. Inform. (JUTIF), vol. 4, no. 1, pp. 247-256, Feb. 2023.