ALGORITHM COMPARISON AND FEATURE SELECTION FOR CLASSIFICATION OF BROILER CHICKEN HARVEST
Abstract
Broiler chickens are the result of superior breeds that produce a lot of meat. In practice, however, many breeders experience crop failure, which has a serious impact on the economy and can also affect farmer quality, resulting in sanctions. The value of the performance index produced at harvest indicates the success rate of harvesting broiler chickens. Broiler crop yield data can be used to help classify broiler crop yield data using an approach method. The CRISP-DM (Cross Industry Standard Process for Data Mining) method was used in this study's data mining technique. This study compares 3 classification algorithms to determine the best algorithm and 3 feature selection methods to determine the best method for improving algorithm performance. According to the findings of this study, the Random Forest algorithm is the best algorithm for classifying harvest data, with an accuracy rate of 89.14 percent. The best way to improve the algorithm's performance is to use the Backward Elimination method, which can increase the accuracy by 7.53 percent. As a result, the Random Forest + Backward Elimination algorithm yields an accuracy value of 96.67 percent. According to this study, the factors that influence crop yield increase are FCR, number of harvests, and body weight.
Downloads
References
T. Nuryati, “Analisis Performans Ayam Broiler Pada Kandang Tertutup Dan Kandang Terbuka,” J. Peternak. Nusant., vol. 5, no. 2, pp. 77–86, 2019.
S. Pakage et al., “Pengukuran Performa Produksi Ayam Pedaging pada Closed House System dan Open House System di Kabupaten Malang Jawa Timur Indonesia,” J. Sain Peternak. Indones., vol. 15, no. 4, pp. 383–389, 2020.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison Of Data Mining Algorithm For Forecasting Bitcoin Crypto Currency Trends,” J. Tek. Inform., vol. 3, no. 2, pp. 245–248, 2022.
Y. Religia, A. Nugroho, and H. Wahyu, “Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 187–192, 2021.
S. Lestari and H. A. Silaban, “Implementasi Data Mining Dalam Penerbitan Surat Penetapan Tarif Dan Nilai Pabean Menggunakan Metode Classification Pada Direktorat Jenderal Bea Dan Cukai,” CKI SPOT, vol. 11, no. 2, pp. 138–149, 2018.
A. Fauzi, “Analisis Data Bank Direct Marketing dengan Perbandingan Klasifikasi Data Mining Berbasis Optimize Selection ( Evolutionary ),” J. Inform. Univ. Pamulang, vol. 6, no. 1, pp. 102–111, 2021.
S. Amri, “Perbandingan Kerangka Model Klasifikasi untuk Pemilihan Metode Kontrasepsi dengan Pendekatan CRIPS-DM,” Inf. Sci. Libr., vol. 1, no. 1, pp. 14–23, 2020.
A. Yumalia and R. E. Indrajit, “Penerapan Konsep Business Intelligence Untuk Percepatan Penyelesaian Perkara Pada Panmud Perdata Khusus Mahkamah Agung RI,” IKRAITH-INFORMATIKA, vol. 1, no. 2, pp. 61–69, 2017.
P. A. Rahayuningsih, “Komparasi Algoritma Klasifikasi Data Mining untuk Memprediksi Tingkat Kematian Dini Kanker dengan Dataset Early Death Cancer,” J. Inf. Technol. Comput. Sci., vol. 4, no. 2, pp. 63–68, 2019.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Citec J., vol. 6, no. 1, pp. 1–11, 2019.
Karsito and S. Susanti, “Pengajuan Kredit Rumah Dengan ALgoritma Naive Bayes Di Perumahan Azzura Residencia,” SIGMA – J. Teknol. Pelita Bangsa, vol. 9, no. 3, pp. 43–48, 2019.
O. Somantri and M. Khambali, “Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika,” JNTETI, vol. 6, no. 3, pp. 301–306, 2017.
O. Cigdem and H. Demirel, “Performance Analysis of Different Classification Algorithms Using Different Feature Selection Methods on Parkinson’s Disease Detection,” J. Neurosci. Methods, pp. 1–13, 2018, doi: 10.1016/j.jneumeth.2018.08.017.
D. Jain and V. Singh, “Feature Selection and Classification Systems for Chronic Disease Prediction : A Review,” Egypt. Informatics J., 2018, doi: 10.1016/j.eij.2018.03.002.
M. F. Nugroho and S. Wibowo, “Fitur Seleksi Forward Selection Untuk Menetukan Atribut Yang Berpengaruh Pada Klasifikasi Kelulusan Mahasiswa Fakultas Ilmu Komputer UNAKI Semarang Menggunakan Algoritma Naive Bayes,” J. Inform. UPGRIS, vol. 3, no. 1, pp. 63–70, 2017.
Z. He, L. Li, Z. Huang, and H. Situ, “Quantum-Enhanced Feature Selection With Forward Selection and Backward Elimination,” Quantum Inf Process, pp. 1–11, 2018, doi: 10.1007/s11128-018-1924-8.
I. C. R. Drajana, “Metode Support Vector Machine Dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra,” Ilk. J. Ilm., vol. 9, no. 2, pp. 116–123, 2017.
R. T. Prasetio and E. Ripandi, “Optimasi Klasifikasi Jenis Hutan Menggunakan Deep Learning Berbasis Optimize Selection,” J. Inform., vol. 6, no. 1, pp. 100–106, 2019.
A. R. Kadafi, “Perbandingan Algoritma Untuk Klasifikasi Nilai Pada Penjurusan Siswa SMA,” J. ELTIKOM, vol. 2, no. 2, pp. 67–77, 2018.
Ardiyansyah, P. A. Rahayuningsih, and R. Maulana, “Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner,” J. Khatulistiwa Inform., vol. 6, no. 1, pp. 20–28, 2018.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 219–225, 2021, doi: 10.30865/jurikom.v8i6.3655.
T. Imandasari, E. Irawan, A. P. Windarto, and A. Wanto, “Algoritma Naive Bayes Dalam Klasifikasi Lokasi Pembangunan Sumber Air,” Pros. Semin. Nas. Ris. Inf., pp. 750–761, 2019.
H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018.
R. G. Ramli and Y. Sibaroni, “Klasifikasi Topik Twitter menggunakan Metode Random Forest dan Fitur Ekspansi Word2Vec,” e-Proceeding Eng., vol. 9, no. 1, pp. 79–92, 2022.
B. Prasojo and E. Haryatmi, “Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest,” J. Nas. Teknol. dan Sist. Inf., vol. 07, no. 02, pp. 79–89, 2021.
G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” Cogito Smart J., vol. 6, no. 2, pp. 167–178, 2020.
V. W. Siburian and I. E. Mulyana, “Prediksi Harga Ponsel Menggunakan Metode Random Forest,” Pros. Annu. Res. Semin., vol. 4, no. 1, pp. 144–147, 2018.
M. Faid, M. Jasri, and T. Rahmawati, “Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi,” TEKNIKA, vol. 8, no. 1, pp. 11–16, 2019, doi: 10.34148/teknika.v8i1.95.
R. R. Baharuddin, M. Niswar, and A. A. Ilham, “Deteksi Kepiting Molting Menggunakan Teknik Klasifikasi Machine Learning,” J. J-Ensitec, vol. 08, no. 01, pp. 599–610, 2021.
Rudiono and D. Avianto, “Implementasi Ekstraksi Ciri Histogram dan K-Nearest Neighbor untuk Klasifikasi Jenis Tanah Di Kota Banjar, Jawa Barat,” J. Buana Inform., vol. 10, no. 2, pp. 85–98, 2019.
L. Andiani, Sukemi, and D. P. Rini, “Analisis Penyakit Jantung Menggunakan Metode KNN Dan Random Forest,” Pros. Annu. Res. Semin., vol. 5, no. 1, pp. 165–169, 2019.
Copyright (c) 2022 Christian Cahyaningtyas
This work is licensed under a Creative Commons Attribution 4.0 International License.