IMPLEMENTATION OF FUZZY TSUKAMOTO LOGIC TO DETERMINE THE NUMBER OF SEEDS KOI FISH IN THE SUKAMANAH CIANJUR FARMER`S GROUP
Abstract
One of the innovation programs of the Sukamanah Village Karangtengah Cianjur farmer group is in the field of fisheries. One of the programs carried out is the nursery for ornamental Koi fish. Nursery of Koi fish is done because the market demand for Koi fish is high, but there are still very few Koi fish providers. However, farmer groups are currently unable to determine the number of seeds that must be provided to meet market needs to obtain maximum profit. To overcome this, a system is required that can calculate the number of seeds needed based on fish supply and market demand. Fuzzy logic can help humans make decisions; besides, fuzzy logic is an appropriate way to map an input space into an output space. This research aims to build an application using fuzzy logic to determine the number of seeds needed based on the amount of supply and market demand for Koi fish. The data used is sourced from the Sukamanah Farmer’s group, Cianjur. The results showed that using fuzzy logic succeeded in predicting the number of koi fish seeds that must be provided with an accuracy rate of 94,78% using the MAPE method.
Downloads
References
Y. Andriani, A. P. Wulandari, R. I. Pratama, and I. Zidni, “Peningkatan Kualitas Ikan Koi (Cyprinus carpio) di Kelompok PBC Fish Farm di Kecamatan Cisaat, Sukabumi,” Agrokreatif J. Ilm. Pengabdi. Kpd. Masy., vol. 5, no. 1, pp. 33–38, 2019, doi: 10.29244/agrokreatif.5.1.33-38.
M. E. Fachry, K. Sugama, and M. A. Rimmer, “The role of small-holder seed supply in commercial mariculture in South-east Asia,” Aquaculture, vol. 495, no. April, pp. 912–918, 2018, doi: 10.1016/j.aquaculture.2018.06.076.
Y. Yenni, “Logika Fuzzy Menentukan Jumlah Produksi Berdasarkan Persediaan Dan Jumlah Permintaan,” Edik Inform., vol. 3, no. 2, pp. 187–196, 2017, doi: 10.22202/ei.2017.v3i2.2247.
M. Yunus, “Optimasi Penentuan Nilai Parameter Himpunan Fuzzy dengan Teknik Tuning System,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 18, no. 1, pp. 21–28, 2018, doi: 10.30812/matrik.v18i1.334.
I. Permadi, A. K. Nugroho, and M. R. Rachmat, “Prediction of the Amount of Pepper Harvest By Using Fuzzy,” Jutif, vol. 3, no. 1, pp. 177–182, 2022.
H. Kusumadewi, S & Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan Edisi 2. Yogyakarta: Graha Ilmu, 2010.
D. L. Rahakbauw, F. J. Rianekuay, and Y. A. Lesnussa, “Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet (Studi Kasus: Data Persediaan Dan Permintaan Produksi Karet Pada Ptp Nusantara Xiv (Persero) Kebun Awaya, Teluk Elpaputih, Maluku-Indonesia),” J. Ilm. Mat. Dan Terap., vol. 16, no. 1, pp. 51–59, 2019, doi: 10.22487/2540766x.2019.v16.i1.12764.
N. Khairina, “Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang,” SinkrOn, vol. 1, no. 1, p. 19, 2017, doi: 10.33395/sinkron.v1i1.5.
C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 19, 2019, doi: 10.34012/jutikomp.v2i2.528.
F. D. Ragestu and A. J. P. Sibarani, “Penerapan Metode Fuzzy Tsukamoto Dalam Pemilihan Siswa Teladan di Sekolah,” Teknika, vol. 9, no. 1, pp. 9–15, 2020, doi: 10.34148/teknika.v9i1.251.
A. Shoniya and A. Jazuli, “Penentuan Jumlah Produksi Pakaian Dengan Metode Fuzzy Tsukamoto Studi Kasus Konveksi Nisa,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 4, no. 1, p. 54, 2019, doi: 10.29100/jipi.v4i1.1068.
Y. Purba and M. D. Nainggolan, “Implementasi Logika Fuzzy Dengan Metode Tsukamoto Untuk Menentukan Tingkat produksi Beras Berdasarkan Data Persediaan dan Jumlah Permintaan,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 1, no. 3, pp. 87–92, 2020.
I. M. A. B. Saputra, N. W. R. R. Saraswati, I. B. N. Pascima, and N. N. U. Januhari, “Implementasi Fuzzy Tsukamoto dalam Prediksi Produksi Madu Trigona,” J. Eksplora Inform., vol. 11, no. 1, pp. 12–19, 2021, doi: 10.30864/eksplora.v11i1.545.
N. C. Resti, “Penerapan Metode Fuzzy Tsukamoto Untuk Menentukan Jumlah Produksi Obat Ikan di UD. Indo Multi Fish Tulungagung,” J. Sains, Teknol. dan Ind., vol. 1, no. 2, pp. 106–113, 2019, doi: 10.24014/sitekin.v18i1.11022.
D. F. Shiddieq and E. Septyan, “Analisis Perbandingan Metode AHP Dan SAW Dalam Penilaian Kinerja Karyawan (Studi Kasus Di PT. GRAFINDOMEDIA PRATAMA Bandung),” Lpkia, vol. 1, no. 1, pp. 1–7, 2017.
M. D. Irawan, “Sistem Pendukung Keputusan Menentukan Matakuliah Pilihan pada Kurikulum Berbasis KKNI Menggunakan Metode Fuzzy Sugeno,” J. Media Infotama, vol. 13, no. 1, pp. 27–35, 2017, doi: 10.37676/jmi.v13i1.435.
D. Sri and H. Tamando Sihotang, “Decision Support Systems Assessment of the best village in Perbaungan sub-district with the Simple Additive Weighting (SAW) Method,” J. Mantik, vol. 3, no. January, pp. 31–38, 2019.
M. Sukamto, R. A., & Shalahuddin, Rekayasa Perangkat Lunak Terstruktur Dan Berorientasi Objek. Bandung: Informatika, 2018.
S. Kozarević and A. Puška, “Use of fuzzy logic for measuring practices and performances of supply chain,” Oper. Res. Perspect., vol. 5, no. June, pp. 150–160, 2018, doi: 10.1016/j.orp.2018.07.001.
K. E. Supriadi, “Pengembangan Aplikasi Sistem Pendukung Keputusan Untuk Penentuan Perkiraan Produksi Air Minum Kemasan Dengan Metode Fuzzy Inference System Tsukamoto,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 2, p. 155, 2017, doi: 10.23887/janapati.v6i2.11388.
F. Satria and A. J. P. Sibarani, “Penerapan Metode Fuzzy Tsukamoto untuk Pemilihan Karyawan Terbaik Berbasis Java Desktop,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 1, pp. 130–149, 2020, doi: 10.31849/digitalzone.v11i1.3944.
Copyright (c) 2023 Deden Farhan, Feri Sulianta
This work is licensed under a Creative Commons Attribution 4.0 International License.